Skip to main content
Log in

Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5′-deoxy-5′-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tanaka K, Siddiqi NJ, Alhomida AS, Farooqui AA, Ong W-Y (2012) Differential regulation of cPLA2 and iPLA2 expression in the brain. Front Biol 7(6):514–521. doi:10.1007/s11515-012-9247-0

    Article  CAS  Google Scholar 

  2. Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45(2):205–213. doi:10.1194/jlr.R300016-JLR200

    Article  CAS  PubMed  Google Scholar 

  3. Lukiw W, Bazan N (2000) Neuroinflammatory signaling upregulation in Alzheimer's disease. Neurochem Res 25(9–10):1173–1184. doi:10.1023/A:1007627725251

    Article  CAS  PubMed  Google Scholar 

  4. Bazan NG, Colangelo V, Lukiw WJ (2002) Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglan Other Lipid Mediat 68–69:197–210

    Article  Google Scholar 

  5. Clark JD, Schievella AR, Nalefski EA, Lin LL (1995) Cytosolic phospholipase A2. J Lipid Mediat Cell Signal 12(2–3):83–117

    Article  CAS  PubMed  Google Scholar 

  6. Kramer RM, Sharp JD (1997) Structure, function and regulation of Ca2 + −sensitive cytosolic phospholipase A2 (cPLA2). FEBS Lett 410(1):49–53

    Article  CAS  PubMed  Google Scholar 

  7. Farooqui AA, Yang H-C, Rosenberger TA, Horrocks LA (1997) Phospholipase A2 and its role in brain tissue. J Neurochem 69:889–901

    Article  CAS  PubMed  Google Scholar 

  8. Ong WY, Sandhya TL, Horrocks LA, Farooqui AA (1999) Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J Hirnforsch 39(3):391–400

    PubMed  Google Scholar 

  9. Sandhya TL, Ong WY, Horrocks LA, Farooqui AA (1998) A light and electron microscopy study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res 788:223–231

    Article  CAS  PubMed  Google Scholar 

  10. Desbene C, Malaplate-Armand C, Youssef I, Garcia P, Stenger C, Sauvee M, Fischer N, Rimet D, Koziel V, Escanye MC, Oster T, Kriem B, Yen FT, Pillot T, Olivier J (2012) Critical role of cPLA2 in Abeta oligomer-induced neurodegeneration and memory deficit. Neurobiol Aging 33(6):1123 e1117

    Article  CAS  Google Scholar 

  11. Stephenson DT, Lemere CA, Selkoe DJ, Clemens JA (1996) Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol Dis 3:51–63

    Article  CAS  PubMed  Google Scholar 

  12. Sun GY, He Y, Chuang DY, Lee JC, Gu Z, Simonyi A, Sun AY (2012) Integrating cytosolic phospholipase A(2) with oxidative/nitrosative signaling pathways in neurons: a novel therapeutic strategy for AD. Mol Neurobiol 46(1):85–95. doi:10.1007/s12035-012-8261-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cowan MJ, Yao XL, Pawliczak R, Huang X, Logun C, Madara P, Alsaaty S, Wu T, Shelhamer JH (2004) The role of TFIID, the initiator element and a novel 5' TFIID binding site in the transcriptional control of the TATA-less human cytosolic phospholipase A2-alpha promoter. Biochim Biophys Acta 1680(3):145–157. doi:10.1016/j.bbaexp.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  14. Leslie CC (1997) Properties and regulation of cytosolic phospholipase A2. J Biol Chem 272(27):16709–16712

    Article  CAS  PubMed  Google Scholar 

  15. Tsou JH, Chang KY, Wang WC, Tseng JT, Su WC, Hung LY, Chang WC, Chen BK (2007) Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA2in phorbol ester-treated non-small cell lung cancer A549 cells. Nucleic Acids Res 36(1):217–227. doi:10.1093/nar/gkm1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Guo C, Li J, Myatt L, Zhu X, Sun K (2010) Induction of Galphas contributes to the paradoxical stimulation of cytosolic phospholipase A2alpha expression by cortisol in human amnion fibroblasts. Molec Endocrinol (Baltimore, Md) 24(5):1052–1061. doi:10.1210/me.2009-0488

    Article  CAS  Google Scholar 

  17. Chi PL, Luo SF, Hsieh HL, Lee IT, Hsiao LD, Chen YL, Yang CM (2011) Cytosolic phospholipase A2 induction and prostaglandin E2 release by interleukin-1beta via the myeloid differentiation factor 88-dependent pathway and cooperation of p300, Akt, and NF-kappaB activity in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 63(10):2905–2917. doi:10.1002/art.30504

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh M, Tucker DE, Burchett SA, Leslie CC (2006) Properties of the Group IV phospholipase A2 family. Prog Lipid Res 45(6):487–510. doi:10.1016/j.plipres.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  19. Lin L-L, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72(2):269–278. doi:10.1016/0092-8674(93)90666-E

    Article  CAS  PubMed  Google Scholar 

  20. Pavicevic Z, Leslie CC, Malik KU (2008) cPLA2 phosphorylation at serine-515 and serine-505 is required for arachidonic acid release in vascular smooth muscle cells. J Lipid Res 49(4):724–737. doi:10.1194/jlr.M700419-JLR200

    Article  CAS  PubMed  Google Scholar 

  21. Clark JD, Lin L-L, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL (1995) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2 + −dependent translocation domain with homology to PKC and GAP. Cell 65(6):1043–1051. doi:10.1016/0092-8674(91)90556-E

    Article  Google Scholar 

  22. Xu J, Chalimoniuk M, Shu Y, Simonyi A, Sun AY, Gonzalez FA, Weisman GA, Wood WG, Sun GY (2003) Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot Essent Fat Acids 69(6):437–448. doi:10.1016/j.plefa.2003.08.016

    Article  CAS  Google Scholar 

  23. Hernandez M, Bayon Y, Sanchez Crespo M, Nieto ML (1999) Signaling mechanisms involved in the activation of arachidonic acid metabolism in human astrocytoma cells by tumor necrosis factor-alpha: phosphorylation of cytosolic phospholipase A2 and transactivation of cyclooxygenase-2. J Neurochem 73(4):1641–1649

    Article  CAS  PubMed  Google Scholar 

  24. Bayarsaihan D (2011) Epigenetic mechanisms in inflammation. J Dent Res 90(1):9–17. doi:10.1177/0022034510378683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. doi:10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morris MC (2009) The role of nutrition in Alzheimer’s disease: epidemiological evidence. Eur J Neurol 16:1–7. doi:10.1111/j.1468-1331.2009.02735.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotech 28(10):1057–1068. doi:10.1038/nbt.1685

    Article  CAS  Google Scholar 

  28. Allis CD, Jenuwein T, Reinberg D, Caparros M-L (2007) Epigenetics, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Wu FR, Liu Y, Shang MB, Yang XX, Ding B, Gao JG, Wang R, Li WY (2012) Differences in H3K4 trimethylation in in vivo and in vitro fertilization mouse preimplantation embryos. Genet Molec Res : GMR 11(2):1099–1108. doi:10.4238/2012.April.27.9

    Article  CAS  Google Scholar 

  30. Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F, Turner BM (2007) Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem 282(7):4408–4416. doi:10.1074/jbc.M606773200

    Article  CAS  PubMed  Google Scholar 

  31. Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5(4–5):245–253

    PubMed  Google Scholar 

  32. Mariadason JM, Corner GA, Augenlicht LH (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 60(16):4561–4572

    CAS  PubMed  Google Scholar 

  33. Lopes FM, Schroder R, Da Frota ML Jr, Zanotto-Filho A, Muller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JC, Fernandes Mda C, Klamt F (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94. doi:10.1016/j.brainres.2010.03.102

    Article  CAS  PubMed  Google Scholar 

  34. Gilany K, Van Elzen R, Mous K, Coen E, Van Dongen W, Vandamme S, Gevaert K, Timmerman E, Vandekerckhove J, Dewilde S, Van Ostade X, Moens L (2008) The proteome of the human neuroblastoma cell line SH-SY5Y: an enlarged proteome. Biochim Biophys Acta 1784(7–8):983–985. doi:10.1016/j.bbapap.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  35. Jämsä A, Hasslund K, Cowburn RF, Bäckström A, Vasänge M (2004) The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer’s disease-like tau phosphorylation. Biochem Biophys Res Commun 319(3):993–1000. doi:10.1016/j.bbrc.2004.05.075

    Article  PubMed  CAS  Google Scholar 

  36. Ekici M, Hohl M, Schuit F, Martínez-Serrano A, Thiel G (2008) Transcription of genes encoding synaptic vesicle proteins in human neural stem cells: chromatin accessibility, histone methylation pattern, and the essential role of rest. J Biol Chem 283(14):9257–9268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen N, Betts DR, Rechavi G, Amariglio N, Trakhtenbrot L (2003) Clonal expansion and not cell interconversion is the basis for the neuroblast and nonneuronal types of the SK-N-SH neuroblastoma cell line. Cancer Genet Cytogenet 143(1):80–84

    Article  CAS  PubMed  Google Scholar 

  38. Do J, Kim I, Lee J, Choi D-K (2011) Comparison of genomic profiles in human neuroblastic SH-SY5Y and substrate-adherent SH-EP cells using array comparative genomic hybridization. BioChip J 5(2):165–174. doi:10.1007/s13206-011-5210-4

    Article  CAS  Google Scholar 

  39. Muhlethaler-Mottet A, Meier R, Flahaut M, Bourloud KB, Nardou K, Joseph JM, Gross N (2008) Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells. Mol Cancer 7:55. doi:10.1186/1476-4598-7-55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jeong MR, Hashimoto R, Senatorov VV, Fujimaki K, Ren M, Lee MS, Chuang DM (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett 542(1–3):74–78

    Article  CAS  PubMed  Google Scholar 

  41. Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A (2009) Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 122(19):3531–3541

    Article  CAS  PubMed  Google Scholar 

  42. Formisano L, Guida N, Laudati G, Mascolo L, Di Renzo G, Canzoniero LMT (2015) MS-275 inhibits aroclor 1254–induced SH-SY5Y neuronal cell toxicity by preventing the formation of the HDAC3/REST complex on the synapsin-1 promoter. J Pharmacol Exp Ther 352(2):236–243. doi:10.1124/jpet.114.219345

    Article  PubMed  CAS  Google Scholar 

  43. Sun Y, Jiang X, Chen S, Price BD (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580(18):4353–4356. doi:10.1016/j.febslet.2006.06.092

    Article  CAS  PubMed  Google Scholar 

  44. Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 111(10):4880–4891. doi:10.1182/blood-2007-10-117994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. El Mansouri FE, Chabane N, Zayed N, Kapoor M, Benderdour M, Martel-Pelletier J, Pelletier JP, Duval N, Fahmi H (2011) Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum 63(1):168–179. doi:10.1002/art.27762

    Article  PubMed  CAS  Google Scholar 

  46. Huang J, Kent JR, Placek B, Whelan KA, Hollow CM, Zeng PY, Fraser NW, Berger SL (2006) Trimethylation of histone H3 lysine 4 by Set1 in the lytic infection of human herpes simplex virus 1. J Virol 80(12):5740–5746. doi:10.1128/jvi.00169-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Makki MS, Heinzel T, Englert C (2008) TSA downregulates Wilms tumor gene 1 (Wt1) expression at multiple levels. Nucleic Acids Res 36(12):4067–4078. doi:10.1093/nar/gkn356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, Calif) 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  49. Burgess A, Vigneron S, Brioudes E, Labbe J-C, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 107:12564–12569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gavet O, Pines J (2012) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18(4):533–543

    Article  CAS  Google Scholar 

  51. Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, Koebbe BC, Nielsen C, Hirst M, Farnham P, Kuhn RM, Zhu J, Smirnov I, Kent WJ, Haussler D, Madden PAF, Costello JF, Wang T (2011) The Human Epigenome Browser at Washington University. Nat Meth 8 (12):989–990. doi:http://www.nature.com/nmeth/journal/v8/n12/abs/nmeth.1772.html - supplementary-information

  52. Human Epigenome Atlas (2013) http://www.genboree.org/epigenomeatlas/multiGridViewerPublic.rhtml

  53. Encyclopedia of DNA Elements at UCSC (2011)

  54. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu FR, Liu Y, Shang MB, Yang XX, Ding B, Gao JG, Wang R, Li WY (2012) Differences in H3K4 trimethylation in in vivo and in vitro fertilization mouse preimplantation embryos. Genet Mol Res 11(2):1099–1108

    Article  CAS  PubMed  Google Scholar 

  56. Liu NK, Deng LX, Zhang YP, Lu QB, Wang XF, Hu JG, Oakes E, Bonventre JV, Shields CB, Xu XM (2014) Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury. Ann Neurol 75(5):644–658. doi:10.1002/ana.24134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trimble LA, Street IP, Perrier H, Tremblay NM, Weech PK, Bernstein MA (1993) NMR structural studies of the tight complex between a trifluoromethyl ketone inhibitor and the 85-kDa human phospholipase A2. Biochemistry 32:12560–12565

    Article  CAS  PubMed  Google Scholar 

  58. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32(11):591–601. doi:10.1016/j.tins.2009.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3):737–749. doi:10.1042/BJ20021321

    Article  PubMed  PubMed Central  Google Scholar 

  60. Delcuve GP, Khan DH, Davie JR (2012) Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenet 4(1):5. doi:10.1186/1868-7083-4-5

    Article  CAS  Google Scholar 

  61. Luo Y, Jian W, Stavreva D, Fu X, Hager G, Bungert J, Huang S, Qiu Y (2009) Trans-regulation of histone deacetylase activities through acetylation. J Biol Chem 284(50):34901–34910. doi:10.1074/jbc.M109.038356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marks PA (2010) Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta 1799(10–12):717–725. doi:10.1016/j.bbagrm.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS (2004) Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 64(3):1079–1086

    Article  CAS  PubMed  Google Scholar 

  64. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci 100(8):4389–4394. doi:10.1073/pnas.0430973100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kennedy PJ, Feng J, Robison AJ, Maze I, Badimon A, Mouzon E, Chaudhury D, Damez-Werno DM, Haggarty SJ, Han MH, Bassel-Duby R, Olson EN, Nestler EJ (2013) Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 16(4):434–440. doi:10.1038/nn.3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR (2014) HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 127(Pt 7):1441–1453. doi:10.1242/jcs.136390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409(2):581–589. doi:10.1042/bj20070779

    Article  CAS  PubMed  Google Scholar 

  68. Farooqui AA, Ong WY, Farooqui T (2010) Lipid mediators in the nucleus: their potential contribution to Alzheimer's disease. Biochim Biophys Acta 1801(8):906–916. doi:10.1016/j.bbalip.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  69. Hunt AN (2006) Dynamic lipidomics of the nucleus. J Cell Biochem 97(2):244–251. doi:10.1002/jcb.20691

    Article  CAS  PubMed  Google Scholar 

  70. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70(1):81–120. doi:10.1146/annurev.biochem.70.1.81

    Article  CAS  PubMed  Google Scholar 

  71. Cui L, Miao J, Furuya T, Fan Q, Li X, Rathod PK, Su XZ, Cui L (2008) Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development. Eukaryotic Cell 7(7):1200–1210. doi:10.1128/EC.00063-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278:19134–19140

    Article  CAS  PubMed  Google Scholar 

  73. Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20(8):615–626. doi:10.1002/(sici)1521-1878(199808)20:8<615::aid-bies4>3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  74. Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J, Neckers L (2006) Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem (Shariqah (United Arab Emirates)) 2(2):169–174

    Article  CAS  Google Scholar 

  75. Santer FR, Hoschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z (2011) Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther 10(9):1644–1655. doi:10.1158/1535-7163.mct-11-0182

    Article  CAS  PubMed  Google Scholar 

  76. Biel M, Kretsovali A, Karatzali E, Papamatheakis J, Giannis A (2004) Design, synthesis, and biological evaluation of a small-molecule inhibitor of the histone acetyltransferase Gcn5. Angewandte Chemie (International ed in English) 43(30):3974–3976. doi:10.1002/anie.200453879

    Article  CAS  Google Scholar 

  77. Coffey K, Blackburn TJ, Cook S, Golding BT, Griffin RJ, Hardcastle IR, Hewitt L, Huberman K, McNeill HV, Newell DR, Roche C, Ryan-Munden CA, Watson A, Robson CN (2012) Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One 7(10):e45539. doi:10.1371/journal.pone.0045539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang PH, Plass C, Chen CS (2011) Effects of histone deacetylase inhibitors on modulating H3K4 methylation marks—a novel cross-talk mechanism between histone-modifying enzymes. Mol Cell Pharmacol 3(2):39–43

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Martinez-Diaz MA, Che L, Albornoz M, Seneda MM, Collis D, Coutinho AR, El-Beirouthi N, Laurin D, Zhao X, Bordignon V (2010) Pre- and postimplantation development of swine-cloned embryos derived from fibroblasts and bone marrow cells after inhibition of histone deacetylases. Cell Reprogram 12(1):85–94. doi:10.1089/cell.2009.0047

    Article  CAS  PubMed  Google Scholar 

  80. Sike Á, Nagy E, Vedelek B, Pusztai D, Szerémy P, Venetianer A, Boros IM TSA treatment increases H3K9ac levels at the 5 ′ region of both rat Abcb1 genes

  81. Sheridan AM, Force T, Yoon HJ, O'Leary E, Choukroun G, Taheri MR, Bonventre JV (2001) PLIP, a novel splice variant of Tip60, interacts with group IV cytosolic phospholipase A(2), induces apoptosis, and potentiates prostaglandin production. Mol Cell Biol 21(14):4470–4481. doi:10.1128/mcb.21.14.4470-4481.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973. doi:10.1016/j.febslet.2009.10.036

    Article  CAS  PubMed  Google Scholar 

  83. Pufahl L, Katryniok C, Schnur N, Sorg BL, Metzner J, Grez M, Steinhilber D (2012) Trichostatin A induces 5-lipoxygenase promoter activity and mRNA expression via inhibition of histone deacetylase 2 and 3. J Cell Mol Med 16(7):1461–1473. doi:10.1111/j.1582-4934.2011.01420.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang Y, Wang X, Liu L, Wang X (2009) HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells. Neurosci Lett 467(3):212–216. doi:10.1016/j.neulet.2009.10.037

    Article  CAS  PubMed  Google Scholar 

  85. Lobner D (2000) Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods 96(2):147–152. doi:10.1016/S0165-0270(99)00193-4

    Article  CAS  PubMed  Google Scholar 

  86. Chan FK, Moriwaki K, De Rosa MJ (2013) Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol 979:65–70. doi:10.1007/978-1-62703-290-2_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Denecker G, Vercammen D, Steemans M, Vanden Berghe T, Brouckaert G, Van Loo G, Zhivotovsky B, Fiers W, Grooten J, Declercq W, Vandenabeele P (2001) Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ 8(8):829–840. doi:10.1038/sj.cdd.4400883

    Article  CAS  PubMed  Google Scholar 

  88. Uchide N, Ohyama K, Bessho T, Toyoda H (2009) Lactate dehydrogenase leakage as a marker for apoptotic cell degradation induced by influenza virus infection in human fetal membrane cells. Intervirology 52(3):164–173. doi:10.1159/000224644

    Article  CAS  PubMed  Google Scholar 

  89. Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG (2010) Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol 77(4):621–632. doi:10.1124/mol.109.062174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ong W-Y, Farooqui T, Farooqui A (2010) Involvement of cytosolic phospholipase A2, calcium independent phospholipase A2 and plasmalogen selective phospholipase A2 in neurodegenerative and neuropsychiatric conditions. Curr Med Chem 17(25):2746–2763

    Article  CAS  PubMed  Google Scholar 

  91. Pompeia C, Lima T, Curi R (2003) Arachidonic acid cytotoxicity: can arachidonic acid be a physiological mediator of cell death? Cell Biochem Funct 21(2):97–104. doi:10.1002/cbf.1012

    Article  CAS  PubMed  Google Scholar 

  92. Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P (2001) Arachidonic acid causes cell death through the mitochondrial permeability transition: implications for tumor necrosis factor-α apoptotic signaling. J Biol Chem 276(15):12035–12040. doi:10.1074/jbc.M010603200

    Article  CAS  PubMed  Google Scholar 

  93. Seo J, Jo SA, Hwang S, Byun CJ, Lee HJ, Cho DH, Kim D, Koh YH, Jo I (2013) Trichostatin A epigenetically increases calpastatin expression and inhibits calpain activity and calcium-induced SH-SY5Y neuronal cell toxicity. FEBS J 280(24):6691–6701. doi:10.1111/febs.12572

    Article  CAS  PubMed  Google Scholar 

  94. Wilson AG (2008) Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol 79(8 Suppl):1514–1519. doi:10.1902/jop.2008.080172

    Article  CAS  PubMed  Google Scholar 

  95. Mroz RM, Noparlik J, Chyczewska E, Braszko JJ, Holownia A (2007) Molecular basis of chronic inflammation in lung diseases: new therapeutic approach. J Physiol Pharmacol 58(Suppl 5 (Pt 2)):453–460

    PubMed  Google Scholar 

  96. Barnes PJ, Adcock IM, Ito K (2005) Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 25(3):552–563. doi:10.1183/09031936.05.00117504

    Article  CAS  PubMed  Google Scholar 

  97. Kuo C-H, Hsieh C-C, Lee M-S, Chang K-T, Kuo H-F, Hung C-H (2014) Epigenetic regulation in allergic diseases and related studies. Asia Pacific Allerg 4(1):14–18. doi:10.5415/apallergy.2014.4.1.14

    Article  Google Scholar 

  98. Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS One 3(7):e2698. doi:10.1371/journal.pone.0002698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Choi SW, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Adv Nutrit 1(1):8–16. doi:10.3945/an.110.1004

    Article  CAS  Google Scholar 

  100. Vrba J, Trtkova K, Ulrichova J (2011) HDAC inhibitors sodium butyrate and sodium valproate do not affect human ncor1 and ncor2 gene expression in HL-60 cells. Biomed Papers Med Faculty University Palacky, Olomouc, Czechoslovakia 155(3):259–262. doi:10.5507/bp.2011.033

    Article  CAS  Google Scholar 

  101. Hezroni H, Sailaja BS, Meshorer E (2011) Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 lysine 9 (H3K9) acetylation patterns in embryonic stem cells. J Biol Chem 286(41):35977–35988. doi:10.1074/jbc.M111.266254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT, Craddock C, Turner BM (2005) Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19 (10):1751–1759. doi:http://www.nature.com/leu/journal/v19/n10/suppinfo/2403910s1.html

  103. Harikrishnan KN, Karagiannis TC, Chow MZ, El-Osta A (2008) Effect of valproic acid on radiation-induced DNA damage in euchromatic and heterochromatic compartments. Cell Cycle 7(4):468–476. doi:10.4161/cc.7.4.5405

    Article  CAS  PubMed  Google Scholar 

  104. Collins HM, Abdelghany MK, Messmer M, Yue B, Deeves SE, Kindle KB, Mantelingu K, Aslam A, Winkler GS, Kundu TK (2013) Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells. BMC Cancer 13(1):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao X-n, Lin J, Q-y N, Gao L, Y-s Y, J-h Z, Y-h L, Wang L-l YL (2013) A histone acetyltransferase p300 inhibitor C646 induces cell cycle arrest and apoptosis selectively in AML1-ETO-positive AML cells. PLoS One 8(2):e55481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Malapeira J, Khaitova LC, Mas P (2012) Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109(52):21540–21545. doi:10.1073/pnas.1217022110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Buro LJ, Chipumuro E, Henrikson MA (2010) Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1). Epigenet Chromat 3:1–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Medical Research Council of Singapore.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yi Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C.SH., Ng, YK. & Ong, WY. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells. Mol Neurobiol 53, 3854–3872 (2016). https://doi.org/10.1007/s12035-015-9314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9314-z

Keywords

Navigation