Skip to main content
Log in

Experimental Advances Towards Neural Regeneration from Induced Stem Cells to Direct In Vivo Reprogramming

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuronal loss is a common substrate of many neurological diseases that still lack effective treatments and highly burden lives of affected individuals. The discovery of self-renewing stem cells within the central nervous system (CNS) has opened the doors to the possibility of using the plasticity of CNS as a potential strategy for the development of regenerative therapies after injuries. The role of neural progenitor cells appears to be crucial, but insufficient in reparative processes after damage. In addition, the mechanisms that regulate these events are still largely unknown. Stem cell-based therapeutic approaches have primarily focused on the use of either induced pluripotent stem cells or induced neural stem cells as sources for cell transplantation. More recently, in vivo direct reprogramming of endogenous CNS cells into multipotent neural stem/progenitor cells has been proposed as an alternative strategy that could overcome the limits connected with both the invasiveness of exogenous cell transplantation and the technical issues of in vitro reprogramming (i.e., the time requested and the limited available amount of directly induced neuronal cells). In this review, we aim to highlight the recent studies on in vivo direct reprogramming, focusing on astrocytes conversion to neurons or to neural stem/precursors cells, in the perspective of future therapeutic purposes for neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, Hedlund E (2014) Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci CMLS 71(6):999–1015. doi:10.1007/s00018-013-1480-4

    Article  CAS  PubMed  Google Scholar 

  2. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  CAS  PubMed  Google Scholar 

  3. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci Off J Soc Neurosci 17(13):5046–5061

    CAS  Google Scholar 

  4. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117. doi:10.1038/35102174

    Article  CAS  PubMed  Google Scholar 

  5. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28(3):713–726

    Article  CAS  PubMed  Google Scholar 

  6. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(6976):740–744. doi:10.1038/nature02301

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  8. Corti S, Nizzardo M, Simone C, Falcone M, Nardini M, Ronchi D, Donadoni C, Salani S, Riboldi G, Magri F, Menozzi G, Bonaglia C, Rizzo F, Bresolin N, Comi GP (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med 4(165):165ra162. doi:10.1126/scitranslmed.3004108

    PubMed  PubMed Central  Google Scholar 

  9. Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16(7):780–789. doi:10.1038/nn.3425

    Article  CAS  PubMed  Google Scholar 

  10. Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111(4):769–781. doi:10.1002/jcb.22775

    Article  CAS  PubMed  Google Scholar 

  11. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, Ogawa D, Ikeda E, Okano H, Yamanaka S (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745. doi:10.1038/nbt.1554

    Article  CAS  PubMed  Google Scholar 

  12. Yamanaka S (2009) A fresh look at iPS cells. Cell 137(1):13–17. doi:10.1016/j.cell.2009.03.034

    Article  CAS  PubMed  Google Scholar 

  13. Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227. doi:10.1038/nature10284

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, He Y, Huang Q, Tan AC, Zhang D, Benke TA, Sladek JR, Zahniser NR, Li CY (2012) Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 22(2):321–332. doi:10.1038/cr.2011.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348. doi:10.1073/pnas.1105135108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9(3):205–218. doi:10.1016/j.stem.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843. doi:10.1073/pnas.1103113108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109(7):2527–2532. doi:10.1073/pnas.1121003109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479. doi:10.1016/j.stem.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  20. Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Scholer HR (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10(4):465–472. doi:10.1016/j.stem.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  21. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109. doi:10.1016/j.stem.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci Off J Soc Neurosci 27(32):8654–8664. doi:10.1523/JNEUROSCI.1615-07.2007

    Article  CAS  Google Scholar 

  23. Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8(5), e1000373. doi:10.1371/journal.pbio.1000373

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5(4):308–315. doi:10.1038/nn828

    Article  CAS  PubMed  Google Scholar 

  25. Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, Rizzo F, Nardini M, Riboldi G, Magri F, Zanetta C, Faravelli I, Bresolin N, Comi GP (2012) Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res 318(13):1528–1541. doi:10.1016/j.yexcr.2012.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Juopperi TA, Kim WR, Chiang CH, Yu H, Margolis RL, Ross CA, Ming GL, Song H (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5:17. doi:10.1186/1756-6606-5-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD, Rao M, Eagle A, Kammesheidt A, Christensen A, Mendell JR, Burghes AH, Kaspar BK (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29(9):824–828. doi:10.1038/nbt.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, Ikiz B, Hoffmann L, Koolen M, Nagata T, Papadimitriou D, Nagy P, Mitsumoto H, Kariya S, Wichterle H, Henderson CE, Przedborski S (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81(5):1001–1008. doi:10.1016/j.neuron.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldman SA, Nedergaard M, Windrem MS (2012) Glial progenitor cell-based treatment and modeling of neurological disease. Science 338(6106):491–495. doi:10.1126/science.1218071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta K, Patani R, Baxter P, Serio A, Story D, Tsujita T, Hayes JD, Pedersen RA, Hardingham GE, Chandran S (2012) Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms. Cell Death Differ 19(5):779–787. doi:10.1038/cdd.2011.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J, Bjorklund A, Grealish S, Parmar M (2013) Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci U S A 110(17):7038–7043. doi:10.1073/pnas.1303829110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buffo A, Vosko MR, Erturk D, Hamann GF, Jucker M, Rowitch D, Gotz M (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 102(50):18183–18188. doi:10.1073/pnas.0506535102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De la Rossa A, Bellone C, Golding B, Vitali I, Moss J, Toni N, Luscher C, Jabaudon D (2013) In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci 16(2):193–200. doi:10.1038/nn.3299

    Article  PubMed  Google Scholar 

  34. Grande A, Sumiyoshi K, Lopez-Juarez A, Howard J, Sakthivel B, Aronow B, Campbell K, Nakafuku M (2013) Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat Commun 4:2373. doi:10.1038/ncomms3373

    Article  PubMed  PubMed Central  Google Scholar 

  35. Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, Zhang CL (2013) In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 15(10):1164–1175. doi:10.1038/ncb2843

    Article  CAS  PubMed  Google Scholar 

  36. Rouaux C, Arlotta P (2013) Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 15(2):214–221. doi:10.1038/ncb2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Su Z, Niu W, Liu ML, Zou Y, Zhang CL (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:3338. doi:10.1038/ncomms4338

    PubMed  PubMed Central  Google Scholar 

  38. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14(2):188–202. doi:10.1016/j.stem.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The financial support of the Cariplo research grant to SC is gratefully acknowledged. The support of the “Associazione Amici del Centro Dino Ferrari” is gratefully acknowledged.

Conflict of Interest

The authors declare that they have no competing interests. All authors have approved the manuscript and agree with its submission to Cellular and Molecular Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Corti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dametti, S., Faravelli, I., Ruggieri, M. et al. Experimental Advances Towards Neural Regeneration from Induced Stem Cells to Direct In Vivo Reprogramming. Mol Neurobiol 53, 2124–2131 (2016). https://doi.org/10.1007/s12035-015-9181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9181-7

Keywords

Navigation