Skip to main content
Log in

Mild Hyperhomocysteinemia Increases Brain Acetylcholinesterase and Proinflammatory Cytokine Levels in Different Tissues

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mild hyperhomocysteinemia is considered to be a risk factor for cerebral and cardiovascular disorders and can be modeled in experimental rats. Inflammation has been implicated in the toxic effects of homocysteine. Cholinergic signaling controls cytokine production and inflammation through the “cholinergic anti-inflammatory pathway,” and brain acetylcholinesterase activity plays a role in this regulation. The aim of this present study is to investigate the effect of mild chronic hyperhomocysteinemia on proinflammatory cytokine levels in the brain, heart, and serum of rats. Activity, immunocontent, and gene expression of acetylcholinesterase in the brain and butyrylcholinesterase activity in serum were also evaluated. Mild hyperhomocysteinemia was induced in Wistar rats by homocysteine administration (0.03 μmol/g of body weight) twice a day, from the 30th to the 60th days of life. Controls received saline in the same volumes. Results demonstrated an increase in tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and the chemokine monocyte chemotactic protein-1 (MCP-1) in the hippocampus, as well as an increase in IL-1β and IL-6 levels in cerebral cortex. Acetylcholinesterase activity was increased in rats subjected to mild hyperhomocysteinemia in both cerebral structures tested; the immunocontent of this enzyme was also increased in the cerebral cortex and decreased in the hippocampus. Levels of acetylcholinesterase mRNA transcripts were not altered. Peripherally, homocysteine increased TNF-α, IL-6, and MCP-1 levels in the heart and IL-6 levels in serum. Taken altogether, these findings suggest that homocysteine promotes an inflammatory status that can contribute, at least in part, to neuronal and cardiovascular dysfunctions observed in mild hyperhomocysteinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perla-Kaján J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32(4):561–572

    Article  PubMed  Google Scholar 

  2. Djuric D, Jakovljevic V, Rasic-Markovic A, Djuric A, Stanojlovic O (2008) Homocysteine, folic acid and coronary artery disease: possible impact on prognosis and therapy. Indian J Chest Dis Allied Sci 50(1):39–48

    PubMed  CAS  Google Scholar 

  3. Kaul S, Zadeh AA, Shah PK (2006) Homocysteine hypothesis for atherothrombotic cardiovascular disease: not validated. J Am Coll Cardiol 48(5):914–923

    Article  PubMed  CAS  Google Scholar 

  4. Banecka-Majkutewicz Z, Sawuła W, Kadziński L, Węgrzyn A, Banecki B (2012) Homocysteine, heat shock proteins, genistein and vitamins in ischemic stroke—pathogenic and therapeutic implications. Acta Biochim Pol 59(4):495–499

    PubMed  CAS  Google Scholar 

  5. Aksoy M, Basar Y, Salmayenli N, Ayalp K, Genc FA, Dilege S, Kayabali M, Baktiroglu S, Kurtoglu M (2006) Hyperhomocysteinemia in patients with arterial occlusive disease. Surg Today 36(4):327–331

    Article  PubMed  CAS  Google Scholar 

  6. Sachdev P (2004) Homocysteine and neuropsychiatric disorders. Rev Bras Psiquiatr 26(1):50–56

    Article  PubMed  Google Scholar 

  7. Herrmann W, Lorenzl S, Obeid R (2007) Review of the role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric disorders—current evidence and preliminary recommendations. Fortschr Neurol Psychiatr 75(9):515–527

    Article  PubMed  CAS  Google Scholar 

  8. Obeid R, McCaddon A, Herrmann W (2007) The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin Chem Lab Med 45(12):1590–1606

    PubMed  CAS  Google Scholar 

  9. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM (1998) Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55(11):1449–1455

    Article  PubMed  CAS  Google Scholar 

  10. Mattson MP, Kruman II, Duan W (2002) Folic acid and homocysteine in age-related disease. Ageing Res Rev 1(1):95–111

    Article  PubMed  CAS  Google Scholar 

  11. Diaz-Arrastia R (2000) Homocysteine and neurologic disease. Arch Neurol 57(10):1422–1427

    Article  PubMed  CAS  Google Scholar 

  12. Bottiglieri T (2005) Homocysteine and folate metabolism in depression. Prog Neuropsychopharmacol Biol Psychiatry 29(7):1103–1112

    Article  PubMed  CAS  Google Scholar 

  13. Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325(7374):1202

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kerkeni M, Addad F, Chauffert M, Chuniaud L, Miled A, Trivin F, Maaroufi K (2006) Hyperhomocysteinemia, paraoxonase activity and risk of coronary artery disease. Clin Biochem 39(8):821–825

    Article  PubMed  CAS  Google Scholar 

  15. Scherer EB, da Cunha AA, Kolling J, da Cunha MJ, Schmitz F, Sitta A, Lima DD, Delwing D, Vargas CR, Wyse AT (2011) Development of an animal model for chronic mild hyperhomocysteinemia and its response to oxidative damage. Int J Dev Neurosci 29(7):693–699

    Article  PubMed  CAS  Google Scholar 

  16. Herrmann W, Obeid R (2011) Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med 49(3):435–441

    PubMed  CAS  Google Scholar 

  17. Scherer EB, Schmitz F, Vuaden FC, Savio LE, Ferreira AG, Tasca RA, Casali EA, Bogo MR, Bonan CD, Wyse AT (2012) Mild hyperhomocysteinemia alters extracellular adenine metabolism in rat brain. Neuroscience 223:28–34

    Article  PubMed  CAS  Google Scholar 

  18. Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32(2):79–87

    Article  PubMed  Google Scholar 

  19. Engelhart MJ, Geerlings MI, Meijer J, Kiliaan A, Ruitenberg A, van Swieten JC, Stijnen T, Hofman A, Witteman JC, Breteler MM (2004) Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Arch Neurol 61(5):668–672

    Article  PubMed  Google Scholar 

  20. Libby P, Ridker PM (2004) Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med 116(suppl 6A):9S–16S

    Article  PubMed  Google Scholar 

  21. Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13(12):RA214–RA221

    PubMed  CAS  Google Scholar 

  22. Aggarwal BB, Takada Y (2005) In: Platanias LC (ed) Cytokines and cancer. Springer, Chicago, p 103

    Chapter  Google Scholar 

  23. Da Cunha AA, Ferreira AG, Wyse AT (2010) Increased inflammatory markers in brain and blood of rats subjected to acute homocysteine administration. Metab Brain Dis 25(2):199–206

    Article  PubMed  CAS  Google Scholar 

  24. Da Cunha AA, Ferreira AG, Loureiro SO, da Cunha MJ, Schmitz F, Netto CA, Wyse AT (2012) Chronic hyperhomocysteinemia increases inflammatory markers in hippocampus and serum of rats. Neurochem Res 37(8):1660–1669

    Article  PubMed  Google Scholar 

  25. Steriade M (1992) Basic mechanisms of sleep generation. Neurology 42(7 Suppl 6):9–17

    PubMed  CAS  Google Scholar 

  26. Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Brain Res Rev 23(1–2):28–46

    Article  PubMed  CAS  Google Scholar 

  27. Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22(6):273–280

    Article  PubMed  CAS  Google Scholar 

  28. Li Y, Wu X, Zhu J, Yan J, Owyang C (2003) Hypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the rat. J Physiol 552(Pt 2):571–587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

    Article  PubMed  CAS  Google Scholar 

  30. Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19(6):493–499

    Article  PubMed  CAS  Google Scholar 

  31. Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265(6):663–679

    Article  PubMed  CAS  Google Scholar 

  32. Massoulié J, Sussman J, Bon S, Silman I (1993) Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res 98:139–146

    Article  PubMed  Google Scholar 

  33. Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  34. Scherer EB, da Cunha MJ, Matté C, Schmitz F, Netto CA, Wyse AT (2010) Methylphenidate affects memory, brain-derived neurotrophic factor immunocontent and brain acetylcholinesterase activity in the rat. Neurobiol Learn Mem 94(2):247–253

    Article  PubMed  CAS  Google Scholar 

  35. Savio LE, Vuaden FC, Kist LW, Pereira TC, Rosemberg DB, Bogo MR, Bonan CD, Wyse AT (2013) Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs. Neuroscience 250:121–128

    Article  PubMed  CAS  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  38. Jones KA, Thomsen C (2013) The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 53:52–62

    Article  PubMed  CAS  Google Scholar 

  39. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  PubMed  CAS  Google Scholar 

  40. Feldmann M, Maini RN (2003) Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9(10):1245–1250

    Article  PubMed  CAS  Google Scholar 

  41. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Le Feuvre R, Brough D, Rothwell N (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 447(2–3):261–269

    Article  PubMed  Google Scholar 

  43. Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 23(1):41–45

    Article  PubMed  CAS  Google Scholar 

  44. Hofer S, Eisenbach C, Lukic IK, Schneider L, Bode K, Brueckmann M, Mautner S, Wente MN, Encke J, Werner J, Dalpke AH, Stremmel W, Nawroth PP, Martin E, Krammer PH, Bierhaus A, Weigand MA (2008) Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med 36(2):404–408

    Article  PubMed  CAS  Google Scholar 

  45. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89(2):337–343

    Article  PubMed  CAS  Google Scholar 

  46. Wang J, Zhang HY, Tang XC (2010) Huperzine a improves chronic inflammation and cognitive decline in rats with cerebral hypoperfusion. J Neurosci Res 88(4):807–815

    PubMed  CAS  Google Scholar 

  47. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    Article  PubMed  CAS  Google Scholar 

  48. Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393(6683):373–377

    Article  PubMed  CAS  Google Scholar 

  49. Shohami E, Kaufer D, Chen Y, Seidman S, Cohen O, Ginzberg D, Melamed-Book N, Yirmiya R, Soreq H (2000) Antisense prevention of neuronal damages following head injury in mice. J Mol Med 78(4):228–236

    Article  PubMed  CAS  Google Scholar 

  50. Meshorer E, Soreq H (2006) Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci 29(4):216–224

    Article  PubMed  CAS  Google Scholar 

  51. Weiss N (2005) Mechanisms of increased vascular oxidant stress in hyperhomocysteinemia and its impact on endothelial function. Curr Drug Metab 6(1):27–36

    Article  PubMed  CAS  Google Scholar 

  52. Liu X, Luo F, Li J, Wu W, Li L, Chen H (2008) Homocysteine induces connective tissue growth factor expression in vascular smooth muscle cells. J Thromb Haemost 6(1):184–192

    Article  PubMed  CAS  Google Scholar 

  53. Zhang L, Jin M, Hu XS, Zhu JH (2006) Homocysteine stimulates nuclear factor kappaB activity and interleukin-6 expression in rat vascular smooth muscle cells. Cell Biol Int 30(7):592–597

    Article  PubMed  CAS  Google Scholar 

  54. Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW (2001) Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103(22):2717–2723

    Article  PubMed  CAS  Google Scholar 

  55. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, Heimovitz H, Cohen HJ, Wallace R (1999) Association of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 106(5):506–512

    Article  PubMed  CAS  Google Scholar 

  56. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772

    Article  PubMed  CAS  Google Scholar 

  57. Lindmark E, Diderholm E, Wallentin L, Siegbahn A (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or non invasive strategy. JAMA 286(17):2107–2113

    Article  PubMed  CAS  Google Scholar 

  58. Gokkusu C, Tulubas F, Unlucerci Y, Ozkok E, Umman B, Aydin M (2010) Homocysteine and pro-inflammatory cytokine concentrations in acute heart disease. Cytokine 50(1):15–18

    Article  PubMed  CAS  Google Scholar 

  59. Holven KB, Aukurst P, Retterstol K, Havge TA, Morkrid L, Ose L (2006) Increased levels of C-reactive protein and interleukin-6 hyperhomocysteinemic subjects. Scand J Clin Lab Invest 66(1):45–54

    Article  PubMed  CAS  Google Scholar 

  60. Giacobini E (ed) (2000) Cholinesterases and cholinesterase inhibitors. Martin Dunitz Ltd, London, pp 181–226

    Google Scholar 

  61. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acethylcolynesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyse acetylcholine. Neuroscience 110(4):627–639

    Article  PubMed  CAS  Google Scholar 

  62. Alcântara VM, Chautard-Freire-Maia EA, Scartezini M, Cerci MS, Braun-Prado K, Picheth G (2002) Butyrylcholinesterase activity and risk factors for coronary artery disease. Scand J Clin Lab Investig 62(5):399–404

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, E.B.S., Loureiro, S.O., Vuaden, F.C. et al. Mild Hyperhomocysteinemia Increases Brain Acetylcholinesterase and Proinflammatory Cytokine Levels in Different Tissues. Mol Neurobiol 50, 589–596 (2014). https://doi.org/10.1007/s12035-014-8660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8660-6

Keywords

Navigation