Skip to main content

Advertisement

Log in

Expression of Myostatin in Neural Cells of the Olfactory System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent studies show that myostatin mRNA expression is found in some regions of the brain. However, the functional significance of this is currently unknown. We therefore investigated myostatin expression and function in the brain. In this study, we used immunohistochemistry, in situ hybridization, and RT-PCR analysis to reveal that myostatin is expressed in the mitral cells in the olfactory bulb (OB) and in neurons in the olfactory cortex (OC). Using 3D reconstruction, mitral cells positive for myostatin were positioned in the lateral and ventral regions of the OB. In contrast, myostatin-positive mitral cells were detected in mice at 2 weeks of age, but not on days 0 and 7 after birth. Activin receptor IIB, a myostatin receptor, was expressed in the OB, OC, hippocampus, and paraventricular thalamic nucleus. Moreover, c-Fos immunostaining in granule cells in the OB was augmented after intracerebroventricular injection of myostatin. These findings suggest that myostatin is localized in specific cells associated with the olfactory system of the brain and may act as a key inhibitor in cell and/or signal development of the olfactory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 234:83–89

    Article  Google Scholar 

  2. Szabo G, Dallmann G, Muller G, Patthy L, Soller M, Varga L (1998) A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome 9:671–672

    Article  PubMed  CAS  Google Scholar 

  3. Zhu J, Hadhazy M, Wehling M, Tidball G, McNally EM (2000) Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett 474:71–75

    Article  PubMed  CAS  Google Scholar 

  4. Grobet L, Royo LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    Article  PubMed  CAS  Google Scholar 

  5. Kambadur R, Sharma M, Smith TPL, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–915

    PubMed  CAS  Google Scholar 

  6. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461

    Article  PubMed  CAS  Google Scholar 

  7. Karim L, Coppieters W, Grobet L, Valentini A, Georges M (2000) Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Anim Genet 31:396–399

    Article  PubMed  CAS  Google Scholar 

  8. Anderson SB, Goldberg AL, Whitman M (2008) Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J Biol Chem 283:7027–7035

    Article  PubMed  CAS  Google Scholar 

  9. Manickam R, Pena RN, Whitelaw CBA (2008) Mammary gland differentiation inversely correlates with GDF-8 expression. Mol Reprod Dev 75:1783–1788

    Article  PubMed  CAS  Google Scholar 

  10. Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP, Conaglen JV, Fowke PJ, Bass JJ (1999) Myostatin, a transforming growth factor-β superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180:1–9

    Article  PubMed  CAS  Google Scholar 

  11. Rodgers B, Garikipati DK (2008) Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr Rev 29:513–534

    Article  PubMed  CAS  Google Scholar 

  12. Ida T, Mori K, Miyazato M, Egi Y, Abe S, Nakahara K, Nishihara M, Kangawa K, Murakami N (2005) Neuromedin S is a novel anorexigenic hormone. Endocrinology 146:4217–4223

    Article  PubMed  CAS  Google Scholar 

  13. Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL (2003) Autoregulation of neurogenesis by GDF11. Neuron 37:197–207

    Article  PubMed  CAS  Google Scholar 

  14. McPherron AC (2010) Metabolic functions of myostatin and GDF11. Immunol Endocr Metab Agents Med Chem 10:217–231

    Article  PubMed  CAS  Google Scholar 

  15. Sato T, Hirono J, Hamana H, Ishikawa T, Shimizu A, Takashima I, Kajiwara R, Iijima T (2008) Architecture of odor information processing in the olfactory system. Anat Sci Int 83:195–206

    Article  PubMed  CAS  Google Scholar 

  16. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  PubMed  CAS  Google Scholar 

  17. Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev 86:409–433

    Article  PubMed  CAS  Google Scholar 

  18. Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508

    Article  PubMed  CAS  Google Scholar 

  19. Cameron VA, Nishimura E, Mathews LS, Lewis KA, Sawchenko PE, Vale WW (1994) Hybridization histochemical localization of activin receptor subtypes in rat brain, pituitary, ovary, and testis. Endocrinology 134:799–808

    Article  PubMed  CAS  Google Scholar 

  20. Ageta H, Murayama A, Migishima R, Kida S, Tsuchida K, Yokoyama M, Inokuchi K (2008) Activin in the brain modulates anxiety-related behavior and adult neurogenesis. PLoS One 3:e1869

    Article  PubMed  Google Scholar 

  21. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    Article  PubMed  CAS  Google Scholar 

  22. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840

    Article  PubMed  CAS  Google Scholar 

  23. Yokoi M, Mori K, Nakanishi S (1995) Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc Natl Acad Sci USA 92:3371–3375

    Article  PubMed  CAS  Google Scholar 

  24. Blanchart A, De Carlos JA, López-Mascaraque L (2006) Time frame of mitral cell development in the mice olfactory bulb. J Comp Neurol 496:529–543

    Article  PubMed  Google Scholar 

  25. Wilson DA, Leon M (1986) Early appearance of inhibition in the neonatal rat olfactory bulb. Brain Res 391:289–292

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the late Prof. Takahiro Yamaguchi for helpful comments. This study was supported by a Grant-in-Aid for Scientific Research (A) (No. 17208024) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and also a Research project for utilizing advanced technologies in agriculture, forestry, and fisheries (No. 1523) from the Ministry of Agriculture, Forestry and Fisheries, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Aso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasaki, S., Miyake, M., Watanabe, H. et al. Expression of Myostatin in Neural Cells of the Olfactory System. Mol Neurobiol 47, 1–8 (2013). https://doi.org/10.1007/s12035-012-8342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8342-1

Keywords

Navigation