Skip to main content
Log in

Tribological and mechanical behaviour of dual-particle (nanoclay and CaSiO3)-reinforced E-glass-reinforced epoxy nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

An E-glass-reinforced epoxy-based nanocomposite containing organomodified nanoclay (15–20 nm) and calcium silicate particles (75–149 μm) was developed through mechanical shearing mixing and hand layup techniques. Three weight fractions (2, 3 and 4%) of nanoclay were selected to study the effects of nanoclay on mechanical and wear behaviour of nanocomposites. Tensile and flexural properties of nanocomposites were evaluated and compared. The wear properties were evaluated for three speed (3.14, 4.19 and 5.24 m s−1) and load (20, 50, and 80 N) conditions based on a design of experiment (L16 matrix) concept. The wear loss results were statistically analysed to study the significance of load, speed and nanoclay content. The morphologies of wear surface and fracture surface were examined with the aid of a scanning electron microscope (SEM) to identify the wear and fracture mechanisms. It was found that the wear loss increases with increasing nanoclay amount due to the particle agglomeration effects. Statistical analysis determines that the load is the most significant parameter affecting the wear resistance of nanocomposites. The mean and S/N ratio analyses rank the parameters significance in affecting wear resistance as follows: load > nanoclay content > speed. The wear mechanisms of nanocomposites are complex due to the observation of multiple features such as fibre thinning, matrix wear and fibre/matrix debonding as against abrasive wear in the pure epoxy. Tensile and flexural test results show that a good dispersion of nanoclay is achieved with 2 wt% amount in epoxy-based nanocomposites. The mechanical properties degrade above 2 wt% due to the excessive reinforcement, uneven distribution and the particle agglomeration effects. Fractography studies of tension-failed samples show that pure epoxy resin fails by multimode gauge explosive mode, whereas nanocomposites fail mainly by the matrix/fibre interface failure and fibre breakages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sampathkumaran P, Seetharamu S, Murali A, Kumar R K and Kishore 1998 Bull. Mater. Sci. 21 335

    Article  Google Scholar 

  2. Naeimirad M, Zadhoush A and Neisiany R E 2016 J. Compos. Mater. 50 435

    Article  Google Scholar 

  3. Prabhu T R, Varma V K and Vedantam S 2014 Wear 309 247

    Article  Google Scholar 

  4. Hussain F, Hojjati M, Okamoto M and Gorga R E 2006 J. Compos. Mater. 40 1511

    Article  Google Scholar 

  5. Barbezat M, Brunner A J, Necola A, Rees M, Gasser Ph and Terrasi G 2009 J. Compos. Mater. 43 9

    Article  Google Scholar 

  6. Zhang Z, Breidt C, Chang L, Haupert F and Friedrich K 2004 Composites Part A 35 1385

    Article  Google Scholar 

  7. Singh R P, Zhang M and Chan D 2002 J. Mater. Sci. 37 781

    Article  Google Scholar 

  8. Wang K, Chen L, Wu J, Toh M L, He C and Yee A F 2005 Macromolecules 38 788

    Article  Google Scholar 

  9. Jordan J, Jacob K I, Tannenbaum R, Sharaf M A and Jasiuk I 2005 Mater. Sci. Eng. A 393 1

    Article  Google Scholar 

  10. Bashar M, Mertiny P and Sundararaj U 2014 J. Nanomater. 1 (http://dx.doi.org/10.1155/2014/312813)

  11. Utracki L A 2004 Clay-containg polymeric nanocomposites vol 2 (Shrewsbury, Shropshire, UK: Rapra Technology Limited)

    Google Scholar 

  12. Giannelis E P 1996 Adv. Mater. 8 29

    Article  Google Scholar 

  13. Laine R M, Choi J and Lee I 2001 Adv. Mater. 13 800

    Article  Google Scholar 

  14. Wetzel B, Haupert F, Friedrich K, Zhang M Q and Rong M Z 2002 Polym. Eng. Sci. 42 1919

    Article  Google Scholar 

  15. Wetzel B, Haupert F and Zhang M Q 2003 Compos. Sci. Technol. 63 2055

    Article  Google Scholar 

  16. Chang L and Zhang Z 2006 Wear 260 869

    Article  Google Scholar 

  17. Zhang Z and Friedrich K 2005 In: K Friedrich, S Fakirovc and Z Zhang (eds) Polymer composites—from nano- to macro-scale (New York, NY 10013, USA: Springer) p 169

  18. Zhang M Q, Rong M Z, Yu S L, Wetzel B and Friedrich K 2002 Wear 253 1086

    Article  Google Scholar 

  19. Durand J M, Vardavoulias M and Jeandin M 1995 Wear 181 833

    Article  Google Scholar 

  20. Chee C Y, Song N L, Abdullah L C, Choong T S Y, Ibrahim A and Chantara T R 2012 J. Nanomater. 2012 1

    Article  Google Scholar 

  21. Zhang M Q, Rong M Z, Yu M L, Wetzel B and Friedrich K 2002 Macromol. Mater. Eng. 287 111

    Article  Google Scholar 

  22. Ng C B, Schadler L S and Siegel R W 1999 Nanostruct. Mater. 12 507

    Article  Google Scholar 

  23. Rong M Z, Zhang M Q, Liu H, Zeng H M, Wetzel B and Friedrich K 2001 Ind. Lubr. Tribol. 53 72

    Article  Google Scholar 

  24. Shi G, Zhang M Q, Rong M Z, Wetzel B and Friedrich K 2004 Wear 256 1072

    Article  Google Scholar 

  25. Petrovic Z S, Javni I, Waddon A and Banhegyi G 2000 J. Appl. Polym. Sci. 76 133

    Article  Google Scholar 

  26. Prabhu T R 2015 Mater. Des. 77 149

    Article  Google Scholar 

  27. Reynaud E, Jouen T, Gautheir C, Vigier G and Varlet J 2001 Polymer 42 8759

    Article  Google Scholar 

  28. Haque A, Shamsuzzoha M, Hussain F and Dean D 2003 , J. Compos. Mater. 37 1821

    Article  Google Scholar 

  29. Luo J J and Daniel I M 2003 Compos. Sci. Technol. 63 1607

    Article  Google Scholar 

  30. Lan T and Pinnavaia T J 1994 Chem. Mater. 6 2216

    Article  Google Scholar 

  31. Pinnavaia T J, Lan T, Wang Z, Shi H and Kaviratna P D 2009 ACS Symp. Ser. 622 250

    Article  Google Scholar 

  32. Chan C M, Wu J, Li J X and Cheung Y K 2002 Polymer 43 2981

    Article  Google Scholar 

  33. Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Walter R and Friedrich K 2001 Polymer 42 167

    Article  Google Scholar 

  34. Nielsen L E and Landel R F 1993 Mechanical properties of polymers and composites, 2nd edn (New York: CRC Press, Taylor & Francis Group)

    Google Scholar 

  35. Roulin-Moloney A C 1989 Fractography and failure mechanisms of polymers and composites (Barking, England: Elsevier Applied Science)

    Google Scholar 

  36. Prabhu T R 2015 Bull. Mater. Sci. 38 753

    Article  Google Scholar 

  37. Prabhu T R, Varma V K and Vedantam S 2014 Wear 317 201

    Article  Google Scholar 

  38. Prabhu T R and Vedantam S 2015 Tribol. Trans. 58 718

    Article  Google Scholar 

  39. Prabhu T R, Varma V K and Vedantam S 2014 J. Mater. Eng. Perform. 23 3666

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T RAM PRABHU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PRABHU, T.R., BASAVARAJAPPA, S., SANTHOSH, R.B. et al. Tribological and mechanical behaviour of dual-particle (nanoclay and CaSiO3)-reinforced E-glass-reinforced epoxy nanocomposites. Bull Mater Sci 40, 107–116 (2017). https://doi.org/10.1007/s12034-016-1355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1355-z

Keywords

Navigation