Skip to main content
Log in

Rubber composites cured with sulphur and peroxide and incorporated with strontium ferrite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, rubber magnetic composites were prepared by incorporation of strontium ferrite into rubber matrices based on natural rubber (NR) and acrylonitrile–butadiene rubber (NBR). Sulphur, peroxide and mixed sulphur/peroxide curing systems were introduced in cross-linking of rubber matrices. The aim was to investigate the influence of curing system composition on physical–mechanical, thermo-physical and magnetic properties of prepared rubber composites and the curing process. Then, the determination of cross-link density and the structure of cross-links were under consideration. The achieved results showed that all investigated parameters were changed depending on the composition of curing system, but also on the type of rubber matrix. While the tensile strength of composites based on NR increased with increasing amount of sulphur in mixed curing systems, in case of composites based on NBR, the highest value of tensile strength reached the value of the sample cured with equivalent ratio of sulphur and peroxide. On the other hand, thermo-physical and magnetic characteristics were found not to be dependent on the curing system composition. The results revealed that not only the composition of curing system, but also the type of rubber matrix plays an important role when preparing the final materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Wang Y F, Li Q L, Zhang C R and Jing H X 2009 J. Alloys Compd. 467 284

    Article  Google Scholar 

  2. Mahmoud K H and Makled M H 2012 Adv. Chem. Eng. Sci. 2 350

    Article  Google Scholar 

  3. Li J, Zhang H F, Shao G Q, Chen D, Zhao G G, Gao Z S, Liu J H, Lu J S and Li X B 2015 Procedia Eng. 102 1885

    Article  Google Scholar 

  4. Yadhu K, Shine Ch, Nazeeha U, Smitha T R, Parameswaran P S and Prema K H 2015 Int. J. Chem. Stud. 3 15

    Google Scholar 

  5. Saramolee P, Lertsuriwat P, Hunyek A and Sirisathitkul C 2010 Bull. Mater. Sci. 33 597

    Article  Google Scholar 

  6. El-Nashar D E, Ahmed N M and Agami W R 2013 Mater. Des. 52 108

    Article  Google Scholar 

  7. Bellucci F S, de Almeida F C L, Nobre M A L, Rodríguez-Pérez M A, Paschoalini A T and Job A E 2016 Composites Part B 85 196

  8. Pattanayak R, Muduli R, Panda R K, Dash T, Sahu P, Raut S and Panigrahi S 2016 Physica B 485 67

    Article  Google Scholar 

  9. Tong S Y, Tung M J, Ko W S, Huang Y T, Wang Y P, Wang L Ch and Wu J M 2013 J. Alloys Compd. 550 39

    Article  Google Scholar 

  10. Das S, Nayak G C, Sahu S K, Routray P C, Roy A K and Baskey H 2015 J. Magn. Magn. Mater. 377 111

    Article  Google Scholar 

  11. Abi S A, Kuruvilla J, Thomas M, Volker A and Sabu T 2003 Eur. Polym. J. 39 1451

    Article  Google Scholar 

  12. Heideman G, Datta R N, Noordermeer J W M and Van Baarle B 2005 Rubber Chem. Technol. 78 245

  13. Koenig J L 2000 Rubber Chem. Technol. 73 385

  14. Kyselá G, Hudec I and Alexy P 2010 Manufacturing and processing of rubber, 1st edn (Bratislava, Slovakia: Slovak University of Technology Press)

  15. Sheng Ch, Hu Z, Martin H, Duan Y and Zhang J 2015 J. Appl. Polym. Sci. 132 doi: 10.1002/APP.41612

  16. Dluzneski P R 2001 Rubber Chem. Technol. 74 451

    Article  Google Scholar 

  17. Visakh P M, Thomas S, Chandra A K and Mathew A P 2013 Advances in elastomers I: blends and interpenetrating networks (Berlin, Germany: Springer)

    Google Scholar 

  18. Kruželák J, Hudec I and Dosoudil R 2012 Polimery 57 25

    Article  Google Scholar 

  19. Kruželák J, Sýkora R, Dosoudil R and Hudec I 2015 Compos. Interfaces 22 473

    Article  Google Scholar 

  20. Kruželák J, Sýkora R, Dosoudil R and Hudec I 2014 Polym. Adv. Technol. 25 995

    Article  Google Scholar 

  21. Kraus G 1963 J. Appl. Polym. Sci. 7 861

    Article  Google Scholar 

  22. El-Nemr K F 2011 Mater. Des. 32 3361

    Article  Google Scholar 

  23. Shanmugam K V S 2012 Peroxide curable butyl rubber derivatives. PhD Thesis (Kingston, Ontario: Queen’s University)

    Google Scholar 

  24. Akiba M and Hashim A S 1997 Prog. Polym. Sci. 22 475

    Article  Google Scholar 

  25. Valentín J L, Rodríguez A, Marcos-Fernández A and Gonzáles L 2005 J. Appl. Polym. Sci. 96 1

    Article  Google Scholar 

  26. Van Duin M 2002 Kautschuk Gummi Kunststoffe 55 150

  27. Chapman A V and Johnson T 2005 Kautschuk Gummi Kunststoffe 58 358

    Google Scholar 

  28. Basfar A A, Abdel-Aziz M M and Mofti S 2002 Radiat. Phys. Chem. 63 81

    Article  Google Scholar 

  29. Kruželák J, Ušaková M, Dosoudil R, Hudec I and Sýkora R 2014 Polym.-Plast. Technol. Eng. 53 1095

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Slovak Research and Development Agency under Contract No. APVV069412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JÁN KRUŽELÁK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KRUŽELÁK, J., DOSOUDIL, R., SÝKORA, R. et al. Rubber composites cured with sulphur and peroxide and incorporated with strontium ferrite. Bull Mater Sci 40, 223–231 (2017). https://doi.org/10.1007/s12034-016-1347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1347-z

Keywords

Navigation