Skip to main content
Log in

Molecular Cloning and Expression of a Cryptochrome Gene CiCRY-DASH1 from the Antarctic microalga Chlamydomonas sp. ICE-L

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cryptochromes (CRYs) are flavin-binding proteins that sense blue and near-ultraviolet light and participate in the photoreactions of organisms and the regulation of biological clocks. In this study, the complete open reading frame (ORF) of CiCRY-DASH1 (GenBank ID MK392361), encoding one kind of cryptochrome, was cloned from the Antarctic microalga Chlamydomonas sp. ICE-L. The quantitative real-time PCR study showed that the CiCRY-DASH1 had the highest expression at 5 °C and salinity of 32‰. The CiCRY-DASH1 was positively regulated by blue, yellow, or red light. Moreover, the CiCRY-DASH1 can positively respond to extreme polar day and night treatment and exhibit a certain circadian rhythm, which indicated that CiCRY-DASH1 participated in the circadian clock and its expression was regulated by circadian rhythms. And the CiCRY-DASH1 was more noticeably affected by ultraviolet-B radiation than ultraviolet-A radiation, indicating ultraviolet-B light does obvious damage to Antarctic microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Depauw, F. A., Rogato, A., Ribera d’Alcala, M., & Falciatore, A. (2012). Exploring the molecular basis of responses to light in marine diatoms. Journal of Experimental Botany,63, 1575–1591.

    CAS  PubMed  Google Scholar 

  2. Fortunato, A. E., Annunziata, R., Jaubert, M., Bouly, J. P., & Falciatore, A. (2015). Dealing with light: The widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. Journal of Plant Physiology,172, 42–54.

    CAS  PubMed  Google Scholar 

  3. Franz-Badur, S., Penner, A., Strass, S., von Horsten, S., Linne, U., & Essen, L. O. (2019). Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation. Scientific Reports,9, 9896.

    PubMed  PubMed Central  Google Scholar 

  4. Hegemann, P. (2008). Algal sensory photoreceptors. Annual Review of Plant Biology,59, 167–189.

    CAS  PubMed  Google Scholar 

  5. Mittag, M., & Wilhelm, C. (2017). Light driven reactions in model algae. Journal of Plant Physiology,217, 1–3.

    CAS  PubMed  Google Scholar 

  6. Mittag, M., Kiaulehn, S., & Johnson, C. H. (2005). The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiology,137, 399–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kianianmomeni, A., & Hallmann, A. (2014). Algal photoreceptors: In vivo functions and potential applications. Planta,239, 1–26.

    CAS  PubMed  Google Scholar 

  8. Tilbrook, K., Dubois, M., Crocco, C. D., Yin, R., Chappuis, R., Allorent, G., et al. (2016). UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell,28, 966–983.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cashmore, A. R. (2003). Cryptochromes: Enabling plants and animals to determine circadian time. Cell,114, 537–543.

    CAS  PubMed  Google Scholar 

  10. Lin, C., & Shalitin, D. (2003). Cryptochrome structure and signal transduction. Annual Review of Plant Biology,54, 469–496.

    CAS  PubMed  Google Scholar 

  11. Sancar, A. (2003). Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical Reviews,103, 2203–2237.

    CAS  PubMed  Google Scholar 

  12. Graf, D., Wesslowski, J., Ma, H., Scheerer, P., Krauss, N., Oberpichler, I., et al. (2015). Key amino acids in the bacterial (6-4) photolyase PhrB from Agrobacterium fabrum. PLoS ONE,10, e0140955.

    PubMed  PubMed Central  Google Scholar 

  13. Wang, H., Ma, L. G., Li, J. M., Zhao, H. Y., & Deng, X. W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science,294, 154–158.

    CAS  PubMed  Google Scholar 

  14. Yang, H. Q., Tang, R. H., & Cashmore, A. R. (2001). The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell,13, 2573–2587.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, X., Shalitin, D., Liu, X., Maymon, M., Klejnot, J., Yang, H., et al. (2007). Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proceedings of the National Academy of Sciences of the United States of America,104, 7289–7294.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thomas, D. N., & Dieckmann, G. S. (2002). Antarctic Sea ice—A habitat for extremophiles. Science,295, 641–644.

    CAS  PubMed  Google Scholar 

  17. Liu, C., Wang, X., Wang, X., & Sun, C. (2016). Acclimation of Antarctic Chlamydomonas to the sea-ice environment: A transcriptomic analysis. Extremophiles,20, 437–450.

    CAS  PubMed  Google Scholar 

  18. An, M., Mou, S., Zhang, X., Ye, N., Zheng, Z., Cao, S., et al. (2013). Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresource Technology,134, 151–157.

    CAS  PubMed  Google Scholar 

  19. Liu, C., Wu, G., Huang, X., Liu, S., & Cong, B. (2012). Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles,16, 419–425.

    CAS  PubMed  Google Scholar 

  20. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., et al. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research,31, 3497–3500.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods (San Diego, Calif),25, 402–408.

    CAS  Google Scholar 

  22. Bilger, W., & Bjorkman, O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research,25, 173–185.

    CAS  PubMed  Google Scholar 

  23. Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P., & Oquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews: MMBR,62, 667–683.

    CAS  PubMed  Google Scholar 

  24. Brudler, R., Hitomi, K., Daiyasu, H., Toh, H., Kucho, K., Ishiura, M., et al. (2003). Identification of a new cryptochrome class. Structure, function, and evolution. Molecular Cell,11, 59–67.

    CAS  PubMed  Google Scholar 

  25. Kleine, T., Lockhart, P., & Batschauer, A. (2003). An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. The Plant Journal: for Cell and Molecular Biology,35, 93–103.

    CAS  Google Scholar 

  26. Franz, S., Ignatz, E., Wenzel, S., Zielosko, H., Putu, E., Maestre-Reyna, M., et al. (2018). Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii. Nucleic Acids Research,46, 8010–8022.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, Y., & Jaffe, R. (2007). Lipid biomarkers in suspended particles from a subtropical estuary: Assessment of seasonal changes in sources and transport of organic matter. Marine Environmental Research,64, 666–678.

    CAS  PubMed  Google Scholar 

  28. Lu, Y., Chi, X., Yang, Q., Li, Z., Liu, S., Gan, Q., et al. (2009). Molecular cloning and stress-dependent expression of a gene encoding Δ12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles,13, 875–884.

    CAS  PubMed  Google Scholar 

  29. D’Amico-Damiao, V., & Carvalho, R. F. (2018). Cryptochrome-related abiotic stress responses in plants. Frontiers in Plant Science,9, 1897.

    PubMed  PubMed Central  Google Scholar 

  30. Serrano-Bueno, G., Romero-Campero, F. J., Lucas-Reina, E., Romero, J. M., & Valverde, F. (2017). Evolution of photoperiod sensing in plants and algae. Current Opinion in Plant Biology,37, 10–17.

    CAS  PubMed  Google Scholar 

  31. Allorent, G., & Petroutsos, D. (2017). Photoreceptor-dependent regulation of photoprotection. Current Opinion in Plant Biology,37, 102–108.

    CAS  PubMed  Google Scholar 

  32. Wang, Q., Zuo, Z., Wang, X., Liu, Q., Gu, L., Oka, Y., et al. (2018). Beyond the photocycle-how cryptochromes regulate photoresponses in plants? Current Opinion in Plant Biology,45(Pt A), 120–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Essen, L. O., Franz, S., & Banerjee, A. (2017). Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type. Journal of Plant Physiology,217, 27–37.

    CAS  PubMed  Google Scholar 

  34. Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Muller, N., et al. (2012). A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Plant Physiology,174, 1334–1347.

    Google Scholar 

  35. Muller, N., Wenzel, S., Zou, Y., Kunzel, S., Sasso, S., Weiss, D., et al. (2017). A plant cryptochrome controls key features of the Chlamydomonas circadian clock and its life cycle. Plant Physiology,174, 185–201.

    PubMed  PubMed Central  Google Scholar 

  36. Rai, N., Neugart, S., Yan, Y., Wang, F., Siipola, S. M., Lindfors, A. V., et al. (2019). How do cryptochromes and UVR8 interact in natural and simulated sunlight? Journal of Experimental Botany,70, 4975–4990.

    PubMed  PubMed Central  Google Scholar 

  37. Ruhland, C. T., & Day, T. A. (2001). Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colobanthus quitensis seedlings. Environmental and Experimental Botany,45, 143–154.

    CAS  PubMed  Google Scholar 

  38. Gaberscik, A., Voncina, M., Trost, T., Germ, M., & Olof Bjorn, L. (2002). Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation. Journal of Photochemistry and Photobiology B: Biology,66, 30–36.

    CAS  Google Scholar 

  39. Jenkins, M. E., Suzuki, T. C., & Mount, D. W. (1997). Evidence that heat and ultraviolet radiation activate a common stress-response program in plants that is altered in the uvh6 mutant of Arabidopsis thaliana. Plant Physiology,115, 1351–1358.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, Y., Yang, X., Jang, Z., Chen, Z., Ruo, X., Jin, W., et al. (2018). UV RESISTANCE LOCUS 8 from Chrysanthemum morifolium Ramat (CmUVR8) plays important roles in UV-B signal transduction and UV-B-induced accumulation of flavonoids. Frontiers in Plant Science,9, 955.

    PubMed  PubMed Central  Google Scholar 

  41. Escoubas, J. M., Lomas, M., LaRoche, J., & Falkowski, P. G. (1995). Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proceedings of the National Academy of Sciences of the United States of America,92, 10237–10241.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindahl, M., Yang, D. H., & Andersson, B. (1995). Regulatory proteolysis of the major light-harvesting chlorophyll a/b protein of photosystem II by a light-induced membrane-associated enzymic system. European Journal of Biochemistry,231, 503–509.

    CAS  PubMed  Google Scholar 

  43. Maxwell, D. P., Laudenbach, D. E., & Huner, N. (1995). Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiology,109, 787–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Walters, R. G., Shephard, F., Rogers, J. J., Rolfe, S. A., & Horton, P. (2003). Identification of mutants of Arabidopsis defective in acclimation of photosynthesis to the light environment. Plant Physiology,131, 472–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Peers, G., Truong, T. B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A. R., et al. (2009). An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature,462, 518–521.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFD0900705), the China Ocean Mineral Resources R&D Association (No. DY135-B2-14), the National Key Research and Development Program of China (2018YFD0901103), the Natural Science Foundation of China (41776203, 41576187), Basic Scientific Fund for National Public Research Institutes of China (2016Q10), Key Research and Development Program of Shandong Province (2018YYSP024, 2018GHY115039), Ningbo Public Service Platform for High-Value Utilization of Marine Biological Resources (NBHY-2017-P2), the Natural Science Foundation of Shandong (No. ZR2019BD023), and National Programme on Global Change and Air-sea Interaction (No. GASI-03-02-02-05).

Funding

This research received no further external funding except that mentioned under Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlai Miao.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zheng, Z., He, Y. et al. Molecular Cloning and Expression of a Cryptochrome Gene CiCRY-DASH1 from the Antarctic microalga Chlamydomonas sp. ICE-L. Mol Biotechnol 62, 91–103 (2020). https://doi.org/10.1007/s12033-019-00225-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00225-y

Keywords

Navigation