Skip to main content
Log in

Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hirao, T., Watanabe, S., Temmei, Y., Hiramoto, M., & Kato, H. (2009). Qualitative polymerase chain reaction methods for detecting major food allergens (peanut, soybean, and wheat) by using internal transcribed spacer region. Journal of AOAC International, 92, 1464–1471.

    CAS  Google Scholar 

  2. Wang, W., Han, J., Wu, Y., Yuan, F., Chen, Y., & Ge, Y. (2011). Simultaneous detection of eight food allergens using optical thin-film biosensor chips. Journal of Agricultural and Food Chemistry, 59, 6889–6894.

    Article  CAS  Google Scholar 

  3. Erickson, D. L., Smith, B. D., Clarke, A. C., Sandweiss, D. H., & Tuross, N. (2005). An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proceedings of the National Academy of Sciences of the United States of America, 102, 18315–18320.

    Article  CAS  Google Scholar 

  4. Paffetti, D., Vettori, C., Caramelli, D., Vernesi, C., Lari, M., Paganelli, A., et al. (2007). Unexpected presence of Fagus orientalis complex in Italy as inferred from 45,000-year-old DNA pollen samples from Venice lagoon. BMC Evolutionary Biology, 7(Suppl 2), S6.

    Article  Google Scholar 

  5. Tsai, L. C., Yu, Y. C., Hsieh, H. M., Wang, J. C., Linacre, A., & Lee, J. C. (2006). Species identification using sequences of the trnL intron and the trnL-trnF IGS of chloroplast genome among popular plants in Taiwan. Forensic Science International, 164, 193–200.

    Article  CAS  Google Scholar 

  6. Lee, E. J., Kim, S. C., Hwang, I. K., Yang, H. J., Kim, Y. S., Han, M. S., et al. (2009). The identification of ingested dandelion juice in gastric contents of a deceased person by direct sequencing and GC-MS methods. Journal of Forensic Sciences, 54, 721–727.

    Article  CAS  Google Scholar 

  7. Kikkawa, H. S., Sugita, R., Matsuki, R., & Suzuki, S. (2010). Potential utility of DNA sequence analysis of long-term-stored plant leaf fragments for forensic discrimination and identification. Analytical Sciences, 26, 913–916.

    Article  CAS  Google Scholar 

  8. Ferri, G., Corradini, B., Ferrari, F., Santunione, A. L., Palazzoli, F., & Alu, M. (2015). Forensic botany II, DNA barcode for land plants: Which markers after the international agreement? Forensic Science International: Genetics, 15, 131–136.

    Article  CAS  Google Scholar 

  9. Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 8369–8374.

    Article  CAS  Google Scholar 

  10. Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., et al. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35, e14.

    Article  Google Scholar 

  11. CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794–12797.

    Article  Google Scholar 

  12. Lee, E. J., Hwang, I. K., Kim, N. Y., Lee, K. L., Han, M. S., Lee, Y. H., et al. (2010). An assessment of the utility of universal and specific genetic markers for opium poppy identification. Journal of Forensic Sciences, 55, 1202–1208.

    Article  CAS  Google Scholar 

  13. Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(Database issue), D36–D42.

    Article  CAS  Google Scholar 

  14. Ratnasingham, S. H. P. (2007). Bold: The barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364.

    Article  CAS  Google Scholar 

  15. Fazekas, A. J., Kuzmina, M. L., Newmaster, S. G., & Hollingsworth, P. M. (2012). DNA barcoding methods for land plants. Methods in Molecular Biology, 858, 223–252.

    Article  CAS  Google Scholar 

  16. Ivanova, N. V., de Waard, J. R., Hajibabaei, M. & Hebert, P. D. N. Protocols for high-volume DNA barcode analysis-DNA Working Group Consortium for the Barcode of Life. Available from http://barcoding.si.edu/PDF/Protocols_for_High_Volume_DNA_Barcode_Analysis.pdf#search=Protocols+for+HighVolume+DNA+Barcode+Analysis. Accessed 1 Jan, 2016.

  17. Llongueras, J. P., Nair, S., Salas-Leiva, D., & Schwarzbach, A. E. (2013). Comparing DNA extraction methods for analysis of botanical materials found in anti-diabetic supplements. Molecular Biotechnology, 53, 249–256.

    Article  CAS  Google Scholar 

  18. Ganopoulos, I., Aravanopoulos, F., Madesis, P., Pasentsis, K., Bosmali, I., Ouzounis, C., & Tsaftaris, A. (2013). Taxonomic identification of mediterranean pines and their hybrids based on the high resolution melting (HRM) and trnL approaches: From cytoplasmic inheritance to timber tracing. PLoS One, 8, e60945.

    Article  CAS  Google Scholar 

  19. Howard, C., Gilmore, S., Robertson, J., & Peakall, R. (2008). Developmental validation of a Cannabis sativa STR multiplex system for forensic analysis. Journal of Forensic Sciences, 53, 1061–1067.

    CAS  Google Scholar 

  20. Ujihara, T., Ohta, R., Hayashi, N., Kohata, K., & Tanaka, J. (2009). Identification of Japanese and Chinese green tea cultivars by using simple sequence repeat markers to encourage proper labeling. Bioscience, Biotechnology, and Biochemistry, 73, 15–20.

    Article  CAS  Google Scholar 

  21. Alonso, A., Martin, P., Albarran, C., Garcia, P., Primorac, D., Garcia, O., et al. (2003). Specific quantification of human genomes from low copy number DNA samples in forensic and ancient DNA studies. Croatian Medical Journal, 44, 273–280.

    Google Scholar 

  22. Niederstatter, H., Kochl, S., Grubwieser, P., Pavlic, M., Steinlechner, M., & Parson, W. (2007). A modular real-time PCR concept for determining the quantity and quality of human nuclear and mitochondrial DNA. Forensic Science International, 1, 29–34.

    Article  Google Scholar 

  23. Hudlow, W. R., Chong, M. D., Swango, K. L., Timken, M. D., & Buoncristiani, M. R. (2008). A quadruplex real-time qPCR assay for the simultaneous assessment of total human DNA, human male DNA, DNA degradation and the presence of PCR inhibitors in forensic samples: A diagnostic tool for STR typing. Forensic Science International: Genetics, 2, 108–125.

    Article  Google Scholar 

  24. Tobe, S. S., & Linacre, A. M. (2008). A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures. Forensic Science International: Genetics, 2, 249–256.

    Article  Google Scholar 

  25. Kanthaswamy, S., Premasuthan, A., Ng, J., Satkoski, J., & Goyal, V. (2012). Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification. Forensic Science International: Genetic, 6, 290–295.

    Article  CAS  Google Scholar 

  26. Soejima, M., Hiroshige, K., Yoshimoto, J., & Koda, Y. (2012). Selective quantification of human DNA by real-time PCR of FOXP2. Forensic Science International: Genetics, 6, 447–451.

    Article  CAS  Google Scholar 

  27. Date-Chong, M., Buoncristiani, M. R., Aceves, M., & Orrego, C. (2013). An examination of the utility of a nuclear DNA/mitochondrial DNA duplex qPCR assay to assess surface decontamination of hair. Forensic Science International: Genetics, 7, 392–396.

    Article  CAS  Google Scholar 

  28. Curic, G., Hercog, R., Vrselja, Z., & Wagner, J. (2014). Identification of person and quantification of human DNA recovered from mosquitoes (Culicidae). Forensic Science International: Genetics, 8, 109–112.

    Article  CAS  Google Scholar 

  29. Murray, S. R., Butler, R. C., Hardacre, A. K., & Timmerman-Vaughan, G. M. (2007). Use of quantitative real-time PCR to estimate maize endogenous DNA degradation after cooking and extrusion or in food products. The Journal of Agricultural and Food Chemistry, 55, 2231–2239.

    Article  CAS  Google Scholar 

  30. Matsuyama, S., & Nishi, K. (2011). Genus identification of toxic plant by real-time PCR. International Journal of Legal Medicine, 125, 211–217.

    Article  Google Scholar 

  31. Cascini, F., Passerotti, S., & Martello, S. (2012). A real-time PCR assay for the relative quantification of the tetrahydrocannabinolic acid (THCA) synthase gene in herbal Cannabis samples. Forensic Science International, 217, 134–138.

    Article  CAS  Google Scholar 

  32. Johnson, C. E., Premasuthan, A., Satkoski Trask, J., & Kanthaswamy, S. (2013). Species identification of Cannabis sativa using real-time quantitative PCR (qPCR). Journal of Forensic Sciences, 58, 486–490.

    Article  CAS  Google Scholar 

  33. Lopez-Calleja, I. M., de la Cruz, S., Pegels, N., Gonzalez, I., Garcia, T., & Martin, R. (2013). High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods. Food Chemistry, 141, 1872–1880.

    Article  CAS  Google Scholar 

  34. Zoschke, R., Liere, K., & Borner, T. (2007). From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant Journal, 50, 710–722.

    Article  CAS  Google Scholar 

  35. Rowan, B. A., Oldenburg, D. J., & Bendich, A. J. (2009). A multiple-method approach reveals a declining amount of chloroplast DNA during development in Arabidopsis. BMC Plant Biology, 9, 3.

    Article  Google Scholar 

  36. Preuten, T., Cincu, E., Fuchs, J., Zoschke, R., Liere, K., & Borner, T. (2010). Fewer genes than organelles: Extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant Journal, 64, 948–959.

    Article  CAS  Google Scholar 

  37. Weihe, A. (2014). Quantification of organellar DNA and RNA using real-time PCR. Methods in Molecular Biology, 1132(235–43), 235–243.

    Article  CAS  Google Scholar 

  38. Matsuki, R., Shimano, K., Abe, S., Yatake, H., Takeuchi, T., Shiraki, A., Ishii, T. & Nashimoto, M. (2003). Study on the ecosystem sustaining a pair of Golden Eagles—Identification of food plants by DNA analysis from animal feces. CRIEPI Reports., U03008.

  39. Whelan, J. A., Russell, N., & Whelan, M. A. (2003). A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods, 278, 261–269.

    Article  CAS  Google Scholar 

  40. Zipper, H., Brunner, H., Bernhagen, J., & Vitzthum, F. (2004). Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Research, 32, e103.

    Article  Google Scholar 

  41. Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonak, J., Lind, K., et al. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27, 95–125.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Takahiko Sugimoto of Mitsubishi Tanabe Pharma Corporation for technical advice on qPCR. This work was supported by the Japan Society for the Promotion of Science (KAKENHI Grant No. 20392269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitomi S. Kikkawa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikkawa, H.S., Tsuge, K. & Sugita, R. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species. Mol Biotechnol 58, 212–219 (2016). https://doi.org/10.1007/s12033-016-9918-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9918-1

Keywords

Navigation