Skip to main content

Advertisement

Log in

SplitCore Technology Allows Efficient Production of Virus-Like Particles Presenting a Receptor-Contacting Epitope of Human IgE

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Immunoglobulin E (IgE) plays a central role in type I hypersensitivity including allergy and asthma. Novel treatment strategy envisages development of a therapeutic vaccine designed to elicit autologous blocking antibodies against the IgE. We sought to develop an IgE-epitope antigen that induces antibodies against a receptor-contacting epitope on human IgE molecule. We designed the VLP immunogens which utilize hepatitis B virus core protein (HBcAg) as a carrier, and present arrays of the receptor-contacting epitopes of the human IgE on their surfaces. FG loop from the IgE domain Cε3 was engineered into the HBcAg. Two constructs explore a well-established approach of insertion into a main immunodominant region of the HBcAg. Third construct is different in that the carrier is produced in a form of an assembly of two polypeptide chains which upon expression remain associated in a stable VLP-forming subunit (SplitCore technology). No VLPs were isolated from E.coli expressing the IgE-epitope antigens with contiguous sequences. On the contrary, the SplitCore antigen carrying the FG loop efficiently formed the VLPs. Immunization of mice with the VLPs presenting receptor-contacting epitope of the IgE elicited antibodies recognizing the human IgE in ELISA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Castelli, M., Cappelletti, F., Diotti, R. A., Sautto, G., Criscuolo, E., Dal Peraro, M., & Clementi, N. (2013). Peptide-based vaccinology: Experimental and computational approaches to target hypervariable viruses through the fine characterization of protective epitopes recognized by monoclonal antibodies and the identification of T-cell-activating peptides. Clinical and Developmental Immunology, 2013, 521231.

    Article  Google Scholar 

  2. Gershoni, J. M., Roitburd-Berman, A., Siman-Tov, D. D., Tarnovitski, F. N., & Weiss, Y. (2007). Epitope mapping: The first step in developing epitope-based vaccines. BioDrugs, 21, 145–156.

    Article  CAS  Google Scholar 

  3. Toussaint, N. C., & Kohlbacher, O. (2009). Towards in silico design of epitope-based vaccines. Expert Opinion on Drug Discovery, 4, 1047–1060.

    Article  CAS  Google Scholar 

  4. Crisci, E., Barcena, J., & Montoya, M. (2012). Virus-like particles: The new frontier of vaccines for animal viral infections. Veterinary Immunology and Immunopathology, 148, 211–225.

    Article  CAS  Google Scholar 

  5. Kushnir, N., Streatfield, S. J., & Yusibov, V. (2012). Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine, 31, 58–83.

    Article  CAS  Google Scholar 

  6. Rivera-Hernandez, T., Hartas, J., Wu, Y., Chuan, Y. P., Lua, L. H., Good, M., et al. (2013). Self-adjuvanting modular virus-like particles for mucosal vaccination against group A streptococcus (GAS). Vaccine, 31, 1950–1955.

    Article  CAS  Google Scholar 

  7. Brun, A., Barcena, J., Blanco, E., Borrego, B., Dory, D., Escribano, J. M., et al. (2011). Current strategies for subunit and genetic viral veterinary vaccine development. Virus Research, 157, 1–12.

    Article  CAS  Google Scholar 

  8. Fehr, T., Skrastina, D., Pumpens, P., & Zinkernagel, R. M. (1998). T-cell-independent type I antibody response against B-cell epitopes expressed repetitively on recombinant virus particles. Proceedings of the National Academy of Sciences of the USA, 95, 9477–9481.

    Article  CAS  Google Scholar 

  9. Chackerian, B., Lowy, D. R., & Schiller, J. T. (1999). Induction of autoantibodies to mouse CCR5 with recombinant papillomavirus particles. Proceedings of the National Academy of Sciences of the USA, 96, 2373–2378.

    Article  CAS  Google Scholar 

  10. Chackerian, B. (2010). Virus-like particle based vaccines for Alzheimer disease. Human Vaccines, 6, 926–930.

    Article  CAS  Google Scholar 

  11. Chackerian, B., Lowy, D. R., & Schiller, J. T. (2001). Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. Journal of Clinical Investigation, 108, 415–423.

    Article  CAS  Google Scholar 

  12. Guan, Q., Ma, Y., Aboud, L., Weiss, C. R., Qing, G., Warrington, R. J., & Peng, Z. (2012). Targeting IL-23 by employing a p40 peptide-based vaccine ameliorates murine allergic skin and airway inflammation. Clinical and Experimental Allergy, 42, 1397–1405.

    Article  CAS  Google Scholar 

  13. Ma, Y., Hayglass, K. T., Becker, A. B., Halayko, A. J., Basu, S., Simons, F. E., & Peng, Z. (2007). Novel cytokine peptide-based vaccines: An interleukin-4 vaccine suppresses airway allergic responses in mice. Allergy, 62, 675–682.

    Article  CAS  Google Scholar 

  14. Röhn, T. A., Jennings, G. T., Hernandez, M., Grest, P., Beck, M., Zou, Y., et al. (2006). Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis. European Journal of Immunology, 36, 2857–2867.

    Article  Google Scholar 

  15. Spohn, G., Keller, I., Beck, M., Grest, P., Jennings, G. T., & Bachmann, M. F. (2008). Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. European Journal of Immunology, 38, 877–887.

    Article  CAS  Google Scholar 

  16. Zhou, G., Ma, Y., Jia, P., Guan, Q., Uzonna, J. E., & Peng, Z. (2010). Enhancement of IL-10 bioactivity using an IL-10 peptide-based vaccine exacerbates Leishmania major infection and improves airway inflammation in mice. Vaccine, 28, 1838–1846.

    Article  CAS  Google Scholar 

  17. Whitacre, D. C., Lee, B. O., & Milich, D. R. (2009). Use of hepadnavirus core proteins as vaccine platforms. Expert Review Vaccines, 8, 1565–1573.

    Article  CAS  Google Scholar 

  18. Crowther, R. A., Kiselev, N. A., Bottcher, B., Berriman, J. A., Borisova, G. P., Ose, V., & Pumpens, P. (1994). Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell, 77, 943–950.

    Article  CAS  Google Scholar 

  19. Pumpens, P., & Grens, E. (2001). HBV core particles as a carrier for B-cell/T-cell epitopes. Intervirology, 44, 98–114.

    Article  CAS  Google Scholar 

  20. Roose, K., De Baets, S., Schepens, B., & Saelens, X. (2013). Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Review Vaccines, 12, 183–198.

    Article  CAS  Google Scholar 

  21. Chen, S. S., Barankiewicz, T., Yang, Y. M., Zanetti, M., & Hill, P. (2008). Protection of IgE-mediated allergic sensitization by active immunization with IgE loops constrained in GFP protein scaffold. Journal of Immunological Methods, 333, 10–23.

    Article  CAS  Google Scholar 

  22. Lee, J. (2014). Successful prevention of recurrent anaphylactic events with anti-immunoglobulin E therapy. Asia Pacific Allergy, 4, 126–128.

    Article  Google Scholar 

  23. Peng, Z., Liu, Q., Wang, Q., Rector, E., Ma, Y., & Warrington, R. (2007). Novel IgE peptide-based vaccine prevents the increase of IgE and down-regulates elevated IgE in rodents. Clinical and Experimental Allergy, 37, 1040–1048.

    Article  CAS  Google Scholar 

  24. Wang, C. Y., Walfield, A. M., Fang, X., Hammerberg, B., Ye, J., Li, M. L., et al. (2003). Synthetic IgE peptide vaccine for immunotherapy of allergy. Vaccine, 21, 1580–1590.

    Article  CAS  Google Scholar 

  25. Liu, S., Tobias, R., McClure, S., Styba, G., Shi, Q., & Jackowski, G. (1997). Removal of endotoxin from recombinant protein preparations. Clinical Biochemistry, 30, 455–463.

    Article  CAS  Google Scholar 

  26. Garman, S. C., Wurzburg, B. A., Tarchevskaya, S. S., Kinet, J. P., & Jardetzky, T. S. (2000). Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature, 406, 259–266.

    Article  CAS  Google Scholar 

  27. Walker, A., Skamel, C., & Nassal, M. (2011). SplitCore: An exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Scientific Reports, 1, 5.

    Article  Google Scholar 

  28. Holdom, M. D., Davies, A. M., Nettleship, J. E., Bagby, S. C., Dhaliwal, B., Girardi, E., et al. (2011). Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcɛRI. Nature Structural & Molecular Biology, 18, 571–576.

    Article  CAS  Google Scholar 

  29. Wan, T., Beavil, R. L., Fabiane, S. M., Beavil, A. J., Sohi, M. K., Keown, M., et al. (2002). The crystal structure of IgE Fc reveals an asymmetrically bent conformation. Nature Immunology, 3, 681–686.

    Article  CAS  Google Scholar 

  30. Qiao, C. X., Lv, M., Guo, L. M., Yu, M., Li, Y., Lin, Z., et al. (2009). Inhibition of IgE activity to bind its high affinity receptor (FcεRIα) by mouse anti-IgE Cε3∼4 monoclonal antibody (QME5). International Journal of Biomedical Sciences, 5, 336–344.

    CAS  Google Scholar 

  31. Ye, H., Housden, J. E., Hunter, M., Sabban, S., & Helm, B. A. (2014). Identification of amino acid residues involved in the interaction of canine IgE with canine and human FcεRIα. Molecular Immunology, 57, 111–118.

    Article  CAS  Google Scholar 

  32. Kim, B., Eggel, A., Tarchevskaya, S. S., Vogel, M., Prinz, H., & Jardetzky, T. S. (2012). Accelerated disassembly of IgE-receptor complexes by a disruptive macromolecular inhibitor. Nature, 491, 613–617.

    Article  CAS  Google Scholar 

  33. Zheng, L., Li, B., Qian, W., Zhao, L., Cao, Z., Shi, S., et al. (2008). Fine epitope mapping of humanized anti-IgE monoclonal antibody omalizumab. Biochemical and Biophysical Research Communications, 375, 619–622.

    Article  CAS  Google Scholar 

  34. Wang, C. Y., & Walfield, A. M. (2005). Site-specific peptide vaccines for immunotherapy and immunization against chronic diseases, cancer, infectious diseases, and for veterinary applications. Vaccine, 23, 2049–2056.

    Article  CAS  Google Scholar 

  35. Klamp, T., Schumacher, J., Huber, G., Kühne, C., Meissner, U., Selmi, A., et al. (2011). Highly specific auto-antibodies against claudin-18 isoform 2 induced by a chimeric HBcAg virus-like particle vaccine kill tumor cells and inhibit the growth of lung metastases. Cancer Research, 71, 516–527.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant #0112RK00352 “Study of immunogenicity of virus-like particles carrying epitopes of human immunoglobulin E” from the Ministry of Education and Science (MES) of the Republic of Kazakhstan.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shustov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltabekova, A.Z., Shagyrova, Z.S., Kamzina, A.S. et al. SplitCore Technology Allows Efficient Production of Virus-Like Particles Presenting a Receptor-Contacting Epitope of Human IgE. Mol Biotechnol 57, 746–755 (2015). https://doi.org/10.1007/s12033-015-9867-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9867-0

Keywords

Navigation