Skip to main content

Advertisement

Log in

Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Thermotoga maritima RNase H1 and Bacillus stearothermophilus RNase H2 have an N-terminal substrate binding domain, termed hybrid binding domain (TmaHBD), and N-terminal domain (BstNTD), respectively. HIV-1 reverse transcriptase (RT) is a heterodimer consisting of a P66 subunit and a P51 subunit. The P66 subunit contains a C-terminal RNase H domain, which exhibits RNase H activity either in the presence of Mg2+ or Mn2+ ions. The isolated RNase H domain of HIV-1 RT (RNHHIV) is inactive, possibly due to the lack of a substrate binding ability, disorder of a loop containing His539, and increased flexibility. To examine whether the activity of RNHHIV is restored by the attachment of TmaHBD or BstNTD to its N-terminus, two chimeric proteins, TmaHBD-RNHHIV and BstNTD-RNHHIV, were constructed and characterized. Both chimeric proteins bound to RNA/DNA hybrid more strongly than RNHHIV and exhibited enzymatic activity in the presence of Mn2+ ions. They did not exhibit activity or exhibited very weak activity in the presence of Mg2+ ions. These results indicate that TmaHBD and BstNTD function as an RNA/DNA hybrid binding tag, and greatly increase the substrate binding affinity and Mn2+-dependent activity of RNHHIV but do not restore the Mg2+-dependent activity of RNHHIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tadokoro, T., & Kanaya, S. (2009). Ribonuclease H: Molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. FEBS Journal, 276(6), 1482–1493.

    Article  CAS  Google Scholar 

  2. Cerritelli, S. M., & Crouch, R. J. (2009). Ribonuclease H: The enzymes in eukaryotes. FEBS Journal, 276(6), 1494–1505.

    Article  CAS  Google Scholar 

  3. Rychlik, M. P., Chon, H., Cerritelli, S. M., Klimek, P., Crouch, R. J., & Nowotny, M. (2010). Crystal structure of RNase H2 in complex with nucleic acid reveal the mechanism of RNA-DNA junction recognition and cleavage. Molecular Cell, 40(4), 658–670.

    Article  CAS  Google Scholar 

  4. Haruki, M., Tsunaka, Y., Morikawa, M., & Kanaya, S. (2002). Cleavage of a DNA-RNA-DNA/DNA chimeric substrate containing a single ribonucleotide at the DNA-RNA junction with prokaryotic RNases HII. FEBS Letters, 531(2), 204–208.

    Article  CAS  Google Scholar 

  5. Rydberg, B., & Game, J. (2002). Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. Proceeding of the National Academy of Science USA, 99(26), 16654–16659.

    Article  CAS  Google Scholar 

  6. Sparks, J. L., Chon, H., Cerritelli, S. M., Kunkel, T. A., Johansson, E., Crouch, R. J., & Burgers, P. M. (2012). RNase H2-initiated ribonucleotide excision repair. Molecular Cell, 47(6), 980–986.

    Article  CAS  Google Scholar 

  7. Lazzaro, F., Novarina, D., Amara, F., Watt, D. L., Stone, J. E., Costanzo, V., et al. (2012). RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Molecular Cell, 45(1), 99–110.

    Article  CAS  Google Scholar 

  8. Reijns, M. A., Rabe, B., Rigby, R. E., Mill, P., Astell, K. R., Lettice, L. A., et al. (2012). Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell, 149(5), 1008–1022.

    Article  CAS  Google Scholar 

  9. Hiller, B., Achleitner, M., Glage, S., Naumann, R., Behrendt, R., & Roers, A. (2012). Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. Journal of Experimental Medicine, 209(8), 1419–1426.

    Article  CAS  Google Scholar 

  10. Nick McElhinny, S. A., Kumar, D., Clark, A. B., Watt, D. L., Watts, B. E., Lundström, E. B., et al. (2010). Genome instability due to ribonucleotide incorporation into DNA. Nature Chemical Biology, 6(10), 774–781.

    Article  CAS  Google Scholar 

  11. McDonald, J. P., Vaisman, A., Kuban, W., Goodman, M. F., & Woodgate, R. (2012). Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V. PLoS Genetics, 8(11), e1003030.

    Article  CAS  Google Scholar 

  12. Kogoma, T., & Foster, P. L. (1998). Physiological functions of E. coli RNase HI. In R. J. Crouch & J. J. Toulme (Eds.), Ribonucleases H (pp. 39–66). Paris: INSERM.

    Google Scholar 

  13. Drolet, M., Phoenix, P., Menzel, R., Massé, E., Liu, L. F., & Crouch, R. J. (1995). Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proceeding of the National Academy of Science USA, 92(8), 3526–3530.

    Article  CAS  Google Scholar 

  14. Cerritelli, S. M., Frolova, E. G., Feng, C., Grinberg, A., Love, P. E., & Crouch, R. J. (2003). Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Molecular Cell, 11(3), 807–815.

    Article  CAS  Google Scholar 

  15. Qiu, J., Qian, Y., Frank, P., Wintersberger, U., & Shen, B. (1999). Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Molecular and Cellular Biology, 19(12), 8361–8371.

    CAS  Google Scholar 

  16. Crow, Y. J., Leitch, A., Hayward, B. E., Garner, A., Parmar, R., Jackson, A. P., et al. (2006). Mutations in genes encoding ribonuclease H2 subunits cause Aicardi–Goutières syndrome and mimic congenital viral brain infection. Nature Genetics, 38(8), 910–916.

    Article  CAS  Google Scholar 

  17. Reijns, M. A., & Jackson, A. P. (2014). Ribonuclease H2 in health and disease. Biochemical Society Transactions, 42(4), 717–725.

    Article  CAS  Google Scholar 

  18. Itaya, M., Omori, A., Kanaya, S., Crouch, R. J., Tanaka, T., & Kondo, K. (1999). Isolation of RNase H genes that are essential for growth of Bacillus subtilis 168. Journal of Bacteriology, 181(7), 2118–2123.

    CAS  Google Scholar 

  19. Arudchandran, A., Cerritelli, S., Narimatsu, S., Itaya, M., Shin, D. Y., Shimada, Y., & Crouch, R. J. (2000). The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes to Cells, 5(10), 789–802.

    Article  CAS  Google Scholar 

  20. Jongruja, N., You, D. J., Kanaya, E., Koga, Y., Takano, K., & Kanaya, S. (2010). The N-terminal hybrid binding domain of RNase HI from Thermotoga maritima is important for substrate binding and Mg2+-dependent activity. FEBS Journal, 277(21), 4474–4489.

    Article  CAS  Google Scholar 

  21. Nowotny, M., Gaidamakov, S. A., Crouch, R. J., & Yang, W. (2005). Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell, 121(7), 1005–1016.

    Article  CAS  Google Scholar 

  22. Permanasari, E. D., Koga, Y., & Kanaya, S. (2013). Role of N-terminal extension of Bacillus stearothermophilus RNase H2 and C-terminal extension of Thermotoga maritima RNase H2. FEBS Journal, 280(20), 5065–5079.

    Article  CAS  Google Scholar 

  23. Chon, H., Matsumura, H., Koga, Y., Takano, K., & Kanaya, S. (2006). Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus. Journal of Molecular Biology, 356(1), 165–178.

    Article  CAS  Google Scholar 

  24. Miyashita, S., Tadokoro, T., Angkawidjaja, C., You, D. J., Koga, Y., Takano, K., & Kanaya, S. (2011). Identification of the substrate binding site in the N-terminal TBP-like domain of RNase H3. FEBS Letters, 585(14), 2313–2317.

    Article  CAS  Google Scholar 

  25. Jongruja, N., You, D. J., Angkawidjaja, C., Kanaya, E., Koga, Y., & Kanaya, S. (2012). Structure and characterization of RNase H3 from Aquifexaeolicus. FEBS Journal, 279(15), 2737–2753.

    Article  CAS  Google Scholar 

  26. Figiel, M., & Nowotny, M. (2014). Crystal structure of RNase H3-substrate complex reveals parallel evolution of RNA/DNA hybrid recognition. Nucleic Acid Research, 42(14), 9285–9294.

    Article  Google Scholar 

  27. Nowotny, M., Cerritelli, S. M., Ghirlando, R., Gaidamakov, S. A., Crouch, R. J., & Yang, W. (2008). Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD. The EMBO Journal, 27(7), 1172–1181.

    Article  CAS  Google Scholar 

  28. Champoux, J. J., & Schultz, S. J. (2009). Ribonuclease H: Properties, substrate specificity and roles in retroviral reverse transcription. FEBS Journal, 276(6), 1506–1516.

    Article  CAS  Google Scholar 

  29. Tisdale, M., Schulze, T., Larder, B. A., & Moelling, K. (1991). Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity. Journal of General Virology, 72(1), 59–66.

    Article  CAS  Google Scholar 

  30. Corona, A., Di Leva, F. S., Thierry, S., Pescatori, L., CuzzucoliCrucitti, G., Subra, F., et al. (2014). Identification of highly conserved residues involved in inhibition of HIV-1 RNase H function by diketoacid derivatives. Antimicrobial Agents Chemotherapy, 58(10), 6101–6110.

    Article  Google Scholar 

  31. Le Grice, S. F. (2012). Human immunodeficiency virus reverse transcriptase: 25 Years of research, drug discovery, and promise. Journal of Biological Chemistry, 287(49), 40850–40857.

    Article  Google Scholar 

  32. Stahl, S. J., Kaufman, J. D., Vikić-Topić, S., Crouch, R. J., & Wingfield, P. T. (1994). Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase. Protein Engineering, 7(9), 1103–1108.

    Article  CAS  Google Scholar 

  33. Davies, J. F., Hostomska, Z., Hostomsky, Z., Jordan, S. R., & Matthews, D. A. (1991). Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science, 252(5002), 88–95.

    Article  CAS  Google Scholar 

  34. Hostomsky, Z., Hostomska, Z., Hudson, G. O., Moomaw, E. W., & Nodes, B. R. (1991). Reconstitution in vitro of RNase H activity by using purified N-terminal and C-terminal domains of human immunodeficiency virus type 1 reverse transcriptase. Proceeding of the National Academy of Science USA, 88(4), 1148–1152.

    Article  CAS  Google Scholar 

  35. Smith, J. S., Gritsman, K., & Roth, M. J. (1994). Contribution of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase. Journal of Virology, 68(9), 5721–5729.

    CAS  Google Scholar 

  36. Keck, J. L., & Marqusee, S. (1995). Substitution of a highly basic helix/loop sequence into the RNase H domain of human immunodeficiency virus reverse transcriptase restored its Mn2+-dependent RNase H activity. Proceeding of the National Academy of Science USA, 92, 2740–2744.

    Article  CAS  Google Scholar 

  37. Hang, J. Q., Rajendran, S., Yang, Y., Li, Y., In, P. W., Overton, H., et al. (2004). Activity of the isolated HIV RNase H domain and specific inhibition by N-hydroxyimides. Biochemical and Biophysical Research and Communications, 317(2), 321–329.

    Article  CAS  Google Scholar 

  38. Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A., & Steitz, T. A. (1992). Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 256(5065), 1783–1790.

    Article  CAS  Google Scholar 

  39. Bohlayer, W. P., & DeStefano, J. J. (2006). Tighter binding of HIV reverse transcriptase to RNA-DNA versus DNA-DNA results mostly from interactions in the polymerase domain and requires just a small stretch of RNA-DNA. Biochemistry, 45(24), 7628–7638.

    Article  CAS  Google Scholar 

  40. Zuniga, R., Sengupta, S., Snyder, C., Leon, O., & Roth, M. J. (2004). Expression of the C-terminus of HIV-1 reverse transcriptase p66 and p51 subunits as a single polypeptide with RNase H activity. Protein Engineering, Design & Selection, 17(7), 581–587.

    Article  CAS  Google Scholar 

  41. Farias, R. V., Vargas, D. A., Castillo, A. E., Valenzuela, B., Cote, M. L., Roth, M. J., & Leon, O. (2011). Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening. Antimicrobial Agents and Chemotherapy, 55(10), 4735–4741.

    Article  CAS  Google Scholar 

  42. Haruki, M., Noguchi, E., Kanaya, S., & Crouch, R. J. (1997). Kinetic and stoichiometric analysis for the binding of Escherichia coli ribonuclease HI to RNA-DNA hybrids using surface plasmon resonance. Journal of Biological Chemistry, 272(35), 22015–22022.

    Article  CAS  Google Scholar 

  43. Smith, J. S., & Roth, M. J. (1993). Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain. Journal of Virology, 67(7), 4037–4049.

    CAS  Google Scholar 

  44. Evans, D. B., Fan, N., Swaney, S. M., Tarpley, W. G., & Sharma, S. K. (1994). An active recombinant p15 RNase H domain is functionally distinct from the RNase H domain associated with human immunodeficiency virus type 1 reverse transcriptase. Journal of Biological Chemistry, 269(34), 21741–21747.

    CAS  Google Scholar 

  45. Evans, D. B., Brawn, K., Deibel, M. R., Jr, Tarpley, W. G., & Sharma, S. K. (1991). A recombinant ribonuclease H domain of HIV-1 reverse transcriptase that is enzymatically active. Journal of Biological Chemistry, 266(31), 20583–20585.

    CAS  Google Scholar 

  46. Konishi, A., Shinomura, M., & Yasukawa, K. (2013). Enzymatic characterization of human immunodeficiency virus type 1 reverse transcriptase for use in cDNA synthesis. Applied Biochemistry and Biotechnology, 169(1), 77–87.

    Article  CAS  Google Scholar 

  47. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  48. Goodwin, T. W., & Morton, R. A. (1946). The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochemical Journal, 40(5–6), 628–632.

    CAS  Google Scholar 

  49. Ohtani, N., Haruki, M., Morikawa, M., Crouch, R. J., Itaya, M., & Kanaya, S. (1999). Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: Classification of RNases H into three families. Biochemistry, 38(2), 605–618.

    Article  CAS  Google Scholar 

  50. Pace, C. N. (1990). Measuring and increasing protein stability. Trends in Biotechnology, 8, 93–98.

    Article  CAS  Google Scholar 

  51. Ohtani, N., Haruki, M., Muroya, A., Morikawa, M., & Kanaya, S. (2000). Characterization of ribonuclease HII from Escherichia coli overproduced in a soluble form. Journal of Biochemistry, 127(5), 895–899.

    Article  CAS  Google Scholar 

  52. Christen, M. T., Menon, L., Myshakina, N. S., Ahn, J., Parniak, M. A., & Ishima, R. (2012). Structural basis of the allosteric inhibitor interaction on the HIV-1 reverse transcriptase RNase H domain. Chemical Biology & Drug Design, 80(5), 706–716.

    Article  CAS  Google Scholar 

  53. Rohman, M. S., Koga, Y., Takano, K., Chon, H., Crouch, R. J., & Kanaya, S. (2008). Effect of the disease-causing mutations identified in human RNase H2 on the activities and stabilities of yeast RNase H2 and archaeal RNase HII. FEBS Journal, 275(19), 4836–4849.

    Article  CAS  Google Scholar 

  54. Ben-Artzi, H., Zeelon, E., Gorecki, M., & Panet, A. (1992). Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase. Proceeding of the National Academy of Science USA, 89(3), 927–931.

    Article  CAS  Google Scholar 

  55. Nowotny, M., Gaidamakov, S. A., Ghirlando, R., Cerritelli, S. M., Crouch, R. J., & Yang, W. (2007). Structure of human RNase H1 complexed with an RNA/DNA hybrid: Insight into HIV reverse transcription. Molecular Cell, 28(2), 264–276.

    Article  CAS  Google Scholar 

  56. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS MODEL: An automated protein homology-modeling server. Nucleic Acid Research, 31, 3381–3385.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Y. Koga and Dr. E. Kanaya for helpful discussions. This work was supported in part by the Grant (24380055) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenori Kanaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permanasari, ED., Yasukawa, K. & Kanaya, S. Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2. Mol Biotechnol 57, 526–538 (2015). https://doi.org/10.1007/s12033-015-9846-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9846-5

Keywords

Navigation