Skip to main content
Log in

Cloning and Characterization of an Inulinase Gene From the Marine Yeast Candida membranifaciens subsp. flavinogenie W14-3 and Its Expression in Saccharomyces sp. W0 for Ethanol Production

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The INU1 gene encoding an exo-inulinase from the marine-derived yeast Candida membranifaciens subsp. flavinogenie W14-3 was cloned and characterized. It had an open reading frame of 1,536 bp long encoding an inulinase. The coding region of it was not interrupted by any intron. The cloned gene encoded 512 amino acid residues of a protein with a putative signal peptide of 23 amino acids and a calculated molecular mass of 57.8 kDa. The protein sequence deduced from the inulinase gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP FS and Q. The protein also had six conserved putative N-glycosylation sites. The deduced inulinase from the yeast strain W14-3 was found to be closely related to that from Candida kutaonensis sp. nov. KRF1, Kluyveromyces marxianus, and Cryptococcus aureus G7a. The inulinase gene with its signal peptide encoding sequence was subcloned into the pMIRSC11 expression vector and expressed in Saccharomyces sp. W0. The recombinant yeast strain W14-3-INU-112 obtained could produce 16.8 U/ml of inulinase activity and 12.5 % (v/v) ethanol from 250 g/l of inulin within 168 h. The monosaccharides were detected after the hydrolysis of inulin with the crude inulinase (the yeast culture). All the results indicated that the cloned gene and the recombinant yeast strain W14-3-INU-112 had potential applications in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chi, Z. M., Chi, Z., Zhang, T., et al. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82, 211–220.

    Article  CAS  Google Scholar 

  2. Chi, Z. M., Zhang, T., Cao, T. S., et al. (2011). Biotechnological potential of inulin for bioprocesses. Bioresources Technology, 102, 4295–4303.

    Article  CAS  Google Scholar 

  3. Cao, T. S., Wang, G. Y., Chi, Z., et al. (2013). Cloning, characterization and heterelogous expression of the INU1 gene from Cryptococcus aureus HYA. Gene, 516, 255–262.

    Article  CAS  Google Scholar 

  4. Liu, G. L., Chi, Z., & Chi, Z. M. (2013). Molecular characterization and expression of microbial inulinase genes. Critical Reviews in Microbiology, 39(2), 152–165.

    Article  Google Scholar 

  5. Yuan, B., Hu, N., Sun, J., et al. (2012). Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T. Applied Microbiology and Biotechnology, 96, 1517–1526.

    Article  CAS  Google Scholar 

  6. Zhang, T., Gong, F., Chi, Z., et al. (2008). Cloning and characterization of the inulinase gene from a marine yeast Pichia guilliermondii and its expression in Pichia pastoris. Antonie van Leeuwenhoek, 95, 13–22.

    Article  Google Scholar 

  7. Gancedo, J. M. (1998). Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews, 62, 334–361.

    CAS  Google Scholar 

  8. MacPherson, S., Larochelle, M., & Turcotte, B. (2006). A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiology and Molecular Biology Reviews, 70, 583–604.

    Article  CAS  Google Scholar 

  9. Wang, L., Chi, Z. M., Wang, X. H., et al. (2008). Isolation and characterization of Candida membranifaciens subsp. flavinogenie W14-3, a novel riboflavin-producing marine yeast. Microbiological Research, 163, 255–266.

    Article  CAS  Google Scholar 

  10. Chi, Z., Wang, L., Ju, L., et al. (2008). Optimisation of riboflavin production by the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 using response surface methodology. Annual Microbiology, 58, 677–681.

    Article  CAS  Google Scholar 

  11. Wang, J. M., Zhang, T., Chi, Z., et al. (2011). 18S rDNA integration of the exo-inulinase gene into chromosomes of the high ethanol producing yeast Saccharomyces sp. W0 for direct conversion of inulin to bioethanol. Biomass and Bioenergy, 35, 3032–3039.

    Article  CAS  Google Scholar 

  12. Chi, Z. M., & Arneberg, N. (1999). Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. Journal of Applied Microbiology, 86, 1047–1052.

    Article  CAS  Google Scholar 

  13. Zhang, T., Chi, Z., Chi, Z. M., et al. (2010). Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp. W0 and ethanol production from inulin. Microbial Biotechnology, 3, 576–582.

    Article  CAS  Google Scholar 

  14. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (Vol. 2, pp. 367–370). Beijing: Cold Spring Harbor Laboratory Press. Chinese translating ed.

    Google Scholar 

  15. Chi, Z. M., Ma, C., Wang, P., et al. (2007). Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresources Technology, 98, 534–538.

    Article  CAS  Google Scholar 

  16. Thompson, J. D., Gibson, T. J., Plewniak, F., et al. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882.

    Article  Google Scholar 

  17. Arnold, K., Bordoli, L., Kopp, J., et al. (2006). The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  18. Gong, F., Sheng, J., Chi, Z. M., et al. (2007). Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. Journal of Industrial Microbiology and Biotechnology, 34, 179–185.

    Article  CAS  Google Scholar 

  19. Spiro, R. G. (1966). Analysis of sugars found in glycoproteins. Methods in Enzymology, 8, 3–26.

    Article  CAS  Google Scholar 

  20. Chi, Z. M., Liu, J., & Zhang, W. (2001). Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enzyme and Microbial Technology, 38, 240–246.

    Article  Google Scholar 

  21. Zhang, T., Gong, F., Peng, Y., et al. (2009). Optimization for high-level expression of the Pichia guilliermondii recombinant inulinase in Pichia pastoris and characterization of the recombinant inulinase. Process Biochemistry, 44, 1335–1339.

    Article  CAS  Google Scholar 

  22. Laloux, O., Cassart, J. P., Delcour, J., et al. (1991). Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Letters, 289, 64–68.

    Article  CAS  Google Scholar 

  23. Wen, T., Liu, F., Huo, K., et al. (2003). Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus CBS4857. World Journal of Microbiology and Biotechnology, 19, 423–426.

    Article  CAS  Google Scholar 

  24. Li, Y., Liu, G. L., & Chi, Z. M. (2013). Ethanol production from inulin and unsterilized meal of Jerusalem artichoke tubers by Saccharomyces sp. W0 expressing the endo-inulinase gene from Arthrobacter sp. Bioresources Technology, 147, 254–259.

    Article  CAS  Google Scholar 

  25. Sheng, J., Chi, Z. M., Gong, F., & Li, J. (2008). Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Applied Biochemistry and Biotechnology, 144, 111–121.

    Article  CAS  Google Scholar 

  26. Wang, S. A., & Li, F. L. (2013). Invertase SUC2 is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 79, 403–406.

    Article  CAS  Google Scholar 

  27. Yuan, B., Wang, S. A., & Li, F. L. (2013). Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresource technology, 139, 402–405.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Hi-Tech Research and Development Program of China (863) (Grant no. 2012AA021205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LL., Tan, MJ., Liu, GL. et al. Cloning and Characterization of an Inulinase Gene From the Marine Yeast Candida membranifaciens subsp. flavinogenie W14-3 and Its Expression in Saccharomyces sp. W0 for Ethanol Production. Mol Biotechnol 57, 337–347 (2015). https://doi.org/10.1007/s12033-014-9827-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9827-0

Keywords

Navigation