Skip to main content
Log in

Valorization of Genetic Variability for the Qualitative Improvement of Autochthonous Grape Cultivars of Cirò’s terroir Through the Self-Fertilization

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study uses PCR-derived marker systems to investigate the genetic differences of 22 grapevine accessions obtained through a self-fertilization program using Gaglioppo and Magliocco dolce. The aim of the study was to improve some qualitative parameters, while preserving the adaptive characteristics of these two cultivars to the adverse environmental conditions of the Calabria region (southern Italy). These two Calabrian grapevines have been cultivated within a restricted area and have been placed under a strong anthropic pressure which has limited their phenotypical variability with no selection of higher performant biotypes. Therefore, to have accessions with improved qualitative traits, a program of genetic improvement based on the self-fertilization of Gaglioppo and Magliocco dolce cultivars was performed in 1998, producing 3,122 accessions. Selection cycles were performed in 14 years. A first selection cycle (1998–2000), based on visual inspection of vegetative traits, selected 1,320 accessions, planted in an experimental vineyard in 2000. A second selection cycle (2000–2008), based on phenotypic traits, sanitary aspects, and chemical composition of the grapes, selected 42 accessions, planted in a new experimental vineyard in 2008. A final selection cycle (2008–2012), produced 22 accessions (virus free), with the best agronomic, sanitary, and qualitative aspects: two accessions obtained from Gaglioppo have been selected by color characteristics (i.e., anthocyanin total content and stability); 20 genotypes obtained from Magliocco dolce had a better macro-composition of the grape (i.e., good sugar content with a balanced acidity). SSR analyses were performed to check the self-fertilization process. The study of genetic differences between accessions was performed by AFLPs, SAMPLs, and M-AFLPs. The application of the above-mentioned techniques allowed both to discriminate molecularly the 22 accessions grouped these accessions according to their genetic similarity. The self-fertilization approach has enabled improvement in the quality of the grapes, while preserving the high degree of adaptation to the environment of these two native Calabrian cultivars in southern Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mullins, L. G., Bouquet, A., & Williams, L. E. (1992). The biology of the grapevine. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  2. Clarke, O. (2001). Encyclopedia of grape (pp. 91–100). Orlando: Harcourt Books.

    Google Scholar 

  3. Calò, A., Costacurta, A., Cancellier, S., & Forti, R. (1990). Garnacha, Grenache, Cannonao, Tocai rosso, un unico vitigno. Vignevini, 9, 45–48.

    Google Scholar 

  4. Meneghetti, S., Costacurta, A., Frare, E., Da Rold, G., Migliaro, D., Morreale, G., et al. (2010). Clones identification and genetic characterization of Garnacha grapevine by means of different PCR-derived marker systems. Molecular Biotechnology, 48–3, 244–254.

    Google Scholar 

  5. Calò, A., & Costacurta, A. (2004). Dei vitigni italici. Treviso: Matteo Editor.

  6. Meneghetti, S., Costacurta, A., Morreale, G., & Calò, A. (2011). Study of intravarietal genetic variability in grapevine cultivars by PCR-derived molecular markers and correlations with the geographic origin. Molecular Biothecnology, 50–1, 72–85.

    Google Scholar 

  7. Calò, A., Scienza, A., & Costacurta, A. (2001). Vitigni d’Italia. Ed. Calderini, Bologna, Italy.

  8. Calò, A., & Costacurta, A. (2005). Dei vitigni italici. Ed. Matteo, Treviso, Italy.

  9. Various Authors. (2013). Atlante dei territori del vino italiano. Ente Mostra Vini, Enoteca Italiana, Siena. Pacini Editore S.p.A. Pisa.

  10. Various Authors. (2008). Il Gaglioppo e i suoi fratelli, i vitigni autoctoni calabresi. Librandi Spa, Cirò Marina, Crotone (It). Stampa: New Press, Como.

  11. Jones, G. V., & Davis, R. E. (2000). Climate influences on grapevine phenology, grape composition and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture, 51, 249–261.

    Google Scholar 

  12. Van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Koundouras, S., & Dubourdieu, D. (2004). Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55, 207–217.

    Google Scholar 

  13. Ubalde, J. M., Sort, X., Poch, R. M., & Porta, M. (2007). Influence of edapho-climatic factors on grape quality in Conca de Barbera vineyards (Catalonia, Spain). International Journal of Vine and Wine Sciences, 41, 33–42.

    Google Scholar 

  14. Andrés-de Prado, R., Yuste-Rojas, M., Sort, X., Andrés-Lacueva, C., Torres, M., & Lamuela-Raventos, R. M. (2007). Effect of soil type on wines produced from Vitis vinifera L. cv. Grenache in commercial vineyards. Journal of Agricultural and Food Chemistry, 55, 779–786.

    Article  Google Scholar 

  15. Tessier, C., David, J., This, P., Boursiquot, J. M., & Charrier, A. (1999). Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theoretical and Applied Genetics, 89, 171–177.

    Article  Google Scholar 

  16. This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., et al. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical and Applied Genetics, 109, 1448–1458.

    Article  CAS  Google Scholar 

  17. Cretazzo, E., Meneghetti, S., De Andrés, M. T., Frare, E., Gaforio, L., & Cifre, J. (2010). Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assist the clonal selection of grapevine. The case of study of Manto Negro, Callet and Moll, autochthonous cultivars of Majorca. Annali of Applied Biology, 157–2, 213–227.

    Article  Google Scholar 

  18. Stavrakakis, M., & Loukas, M. (1983). The between and within grape cultivars genetic variation. Scientia Horticulturae, 19, 321–334.

    Article  CAS  Google Scholar 

  19. Bachmann, K. (1994). Molecular markers in plant ecology. New Phytologist, 126, 403–418.

    Article  CAS  Google Scholar 

  20. Regner, F., Wiedeck, E., & Stadlbauer, A. (2000). Differentiation and identification of White Riesling clones by genetic markers. Vitis, 39–3, 103–107.

    Google Scholar 

  21. Moreno, S., Gogorcena, Y., & Ortiz, J. M. (1995). The use of RAPD markers for identification of cultivated grapevine (Vitis vinifera L.). Scientia Horticulturae, 62–4, 237–243.

    Article  Google Scholar 

  22. Böhm, A., & Zyprian, E. (1998). RAPD marker in grapevine (Vitis spp.) similar to plant retrotransposons. Plant Cell Reports, 17–5, 415–421.

    Google Scholar 

  23. Cervera, M. T., Cabezas J. A., Sancha J. C., Martínez de Toda, F., & Martínez-Zapater, J. M. (1998). Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case of study with accessions from Rioja. Theoretical and Applied Genetics, 97(1–2), 51–59.

  24. Fanizza, G., Chaabane, R., Ricciardi, L., & Resta, P. (2003). Analysis of a spontaneous mutant and selected clones of cv. Italia (Vitis vinifera) by AFLP markers. Vitis, 42–1, 27–30.

    Google Scholar 

  25. Blaich, R., Konradi, J., Rühl, E., & Forneck, A. (2007). Assessing genetic variation among Pinot noir (Vitis vinifera L.) clones with AFLP markers. American Journal of Enology and Viticulture, 58–4, 526–529.

    Google Scholar 

  26. Meneghetti, S., Calò, A., & Bavaresco, L. (2012). A Strategy to investigate the intravarietal genetic variability in Vitis vinifera L. for clones and biotypes identification and to correlate molecular profiles with morphological traits or geographic origins. Molecular Biothecnology, 52(1), 68–81.

    CAS  Google Scholar 

  27. Wolf, T., Cabezas, J. A., & Martínez-Zapater, J. M. (2003). Genetic characterization of closely related rootstocks varieties based on AFLP and SAMPL markers. Acta Horticulturae, 603, 291–300.

    CAS  Google Scholar 

  28. Owens, C. L. (2003). SNP detection and genotyping in Vitis. Acta Horticulturae, 603, 139–140.

    CAS  Google Scholar 

  29. Imazio, S., Labra, M., Grassi, F., Winfield, M., Bardini, M., & Scienza, A. (2002). Molecular tools (SSR, AFLP, MSAP) for clone identification: the case of the grapevine cultivar ‘Traminer’. Plant Breeding, 121–6, 531–535.

    Article  Google Scholar 

  30. Labra, M., Imazio, S., Grassi, F., Rossoni, M., & Sala, F. (2004). Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breeding, 123–2, 180–185.

    Article  Google Scholar 

  31. Pelsy, F., Schehrer, L., & Merdinoglu, D. (2003). Development of grapevine retrotransposon-based molecular markers (S-SAP). Acta Horticulturae, 603, 83–87.

    CAS  Google Scholar 

  32. D’Onofrio, C., De Lorenzis, G., Giordani, T., Natali, L., Scalabrelli, G., & Cavallini, A. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Horticulturae, 827, 45–52.

    Google Scholar 

  33. Antonacci, D., & Placco, L. (1993). Magliocco Canino. Vignevini, 7/8, 56–60.

  34. MiPAAF, Ministero delle Politiche Agricole Alimentari e Forestali. Registro Nazionale delle varietà di vite. D.P.R. 24 dicembre 1969, N. 1164 e D.M. 8 febbraio 2005.

  35. Meneghetti, S., Poljuha, D., Frare, E., Costacurta, A., Morreale, G., Bavaresco, L., et al. (2012). Inter- and intra-varietal genetic variability in Malvasia cultivars. Molecular Biothecnology, 50, 189–199.

    CAS  Google Scholar 

  36. This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., et al. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical and Applied Genetics, 109, 1448–1458.

    Article  CAS  Google Scholar 

  37. Crespan, M. (2003). The parentage of Muscat of Hamburg. Vitis, 42–4, 193–197.

    Google Scholar 

  38. Meneghetti, S., Costacurta, A., Crespan, M., Maul, E., Hack, R., & Regner, F. (2009). Deepening inside the homonyms of Wildbacher by means of SSR markers. Vitis, 48–3, 123–129.

    Google Scholar 

  39. Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence tagged sites (STSs). Theoretical and Applied Genetics, 86, 985–990.

    Article  CAS  Google Scholar 

  40. Bowers, J. E., Dangl, G. S., & Meredith, C. P. (1999). Development and characterization of additional microsatellite DNA markers for grape. American Journal of Enology and Viticulture, 53, 125–130.

    Google Scholar 

  41. Albertini, E., Porceddu, A., Marconi, G., Barcaccia, G., Pallottini, L., & Falcinelli, M. (2003). Microsatellite-AFLP for genetic mapping of complex polyploids. Genome, 46, 824–832.

    Article  CAS  Google Scholar 

  42. Barcaccia, G., Mazzucato, A., Albertini, E., Zethof, J., Gerats, A., Pezzotti, M., et al. (1998). Inheritance of parthenogenesis in Poa pratensis L.: Auxin test and AFLP linkage analyses support monogenic control. Theoretical and Applied Genetics, 96, 74–82.

    Article  Google Scholar 

  43. Meneghetti, S., Barcaccia, G., Paiero, P., & Lucchin, M. (2007). Genetic characterization of Salix alba L. and Salix fragilis L. by means of different PCR-derived marker systems. Plant Biosystems, 141–3, 283–291.

    Article  Google Scholar 

  44. Barcaccia, G., Meneghetti, S., Albertini, E., Triest, L., & Lucchin, M. (2003). Linkage mapping in tetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba x Salix fragilis interspecific hybrids. Heredity, 90, 169–180.

    Article  CAS  Google Scholar 

  45. Van Eijk, M., De Ruiter, M., Broekhof, J., & Peleman, J. (2001). Discovery and detection of polymorphic microsatellites by microsatellite-AFLP. In Plant and Animal Genome IX Conference (p. 143).

  46. Dangl, G. S., Mendum, M. L., Prins, B. H., Walzer, M. A., Meredith, C. P., & Simon, C. J. (2001). Simple sequence repeat analysis of a clonally propagated species: A tool for managing a grape germplasm collection. Genome, 44, 432–438.

    Article  CAS  Google Scholar 

  47. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco, USA: Freeman.

    Google Scholar 

  48. Lynch, M. (1990). The similarity index and DNA fingerprinting. Molecular Biology and Evolution, 7, 478–484.

    CAS  Google Scholar 

  49. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26–3, 297–302.

    Article  Google Scholar 

  50. Rohlf, F. J., & Sokal, R. R. (1981). Comparing numerical taxonomic studies. Systematic Zoology, 30, 459–490.

    Article  Google Scholar 

  51. Tuimala, J. (2006). A primer to phylogenetic analysis using the PHYLIP Package. (5th ed., p. 55). The Author and CSC Espoo, Finland: Scientific Computing Ltd. http://www.ku. edu.np/biotech/bioinfo data/phylip2.pdf.

  52. Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215–222.

    Article  Google Scholar 

  53. Di Stefano, R., & Cravero, M. C. (1991). Metodo per lo studio dei polifenoli dell’uva—The grape phenolics determination. Rivista Viticoltura e Enologia, 2, 37–45.

    Google Scholar 

  54. Mazza, G., & Miniati, E., (1993). Anthocyanins in fruits, vegetables and grains. Boca Raton, Ann Arbor, London, Tokyo: CRC Press.

  55. Pomar, F., Novo, M., & Masa, A. (2005). Varietal differences among the anthocyanin profiles of 50 red table grape cultivars studied by high performance liquid chromatography. Journal of Chromatography A, 1094(1–2), 34–41.

    Article  CAS  Google Scholar 

  56. Cabrita, L., Fossen, T., & Andersen, O. M. (2000). Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chemistry, 68–2, 101–107.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Company F.lli Librandi for providing the Magliocco dolce and Gaglioppo accessions used in this study and Davide De Santis for the support given in experimental process. Thanks also to Angela Bettiol for the English revision of the whole paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Meneghetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meneghetti, S., Gaiotti, F., Giust, M. et al. Valorization of Genetic Variability for the Qualitative Improvement of Autochthonous Grape Cultivars of Cirò’s terroir Through the Self-Fertilization. Mol Biotechnol 57, 275–286 (2015). https://doi.org/10.1007/s12033-014-9821-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9821-6

Keywords

Navigation