Skip to main content
Log in

Identification of a Xylitol Dehydrogenase Gene from Kluyveromyces marxianus NBRC1777

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Xylitol dehydrogenase (XDH) (EC 1.1.1.9) is one of the key enzymes in the xylose fermentation pathway in yeast and fungi. A xylitol dehydrogenase gene (XYL2) encoding a XDH was cloned from Kluyveromyces marxianus NBRC 1777, and the in vivo function was validated by disruption and complementation analysis. The highest activity of KmXDH could be observed at pH 9.5 during 55°C. The values of k cat/K m indicate that KmXDH prefers NAD+ to NADP+ (k cat/K + m NAD 3681/min mM and k cat/K + m NADP 1361/min mM). The different coenzyme preference between KmXR and KmXDH caused an accumulation of NADH in the xylose utilization pathway. The redox imbalance may be one of the reasons to cause the poor xylose fermentation under oxygen-limited conditions in K. marxianus NBRC1777.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aarnikunnas, J. S., Pihlajaniemi, A., Palva, A., Leisola, M., & Nyyssola, A. (2006). Cloning and expression of a xylitol-4-dehydrogenase gene from Pantoea ananatis. Applied and Environmental Microbiology, 72(1), 368–377.

    Article  CAS  Google Scholar 

  2. Abdel-Banat, B. M. A., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology, 85(4), 861–867.

    Article  CAS  Google Scholar 

  3. Abdel-Banat, B. M. A., Nonklang, S., Hoshida, H., & Akada, R. (2010). Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast, 27(1), 29–39. doi:10.1002/Yea.1729.

    CAS  Google Scholar 

  4. Antoni, D., Zverlov, V. V., & Schwarz, W. H. (2007). Biofuels from microbes. Applied Microbiology and Biotechnology, 77(1), 23–35. doi:10.1007/s00253-007-1163-x.

    Article  CAS  Google Scholar 

  5. Banat, I. M., & Marchant, R. (1995). Characterization and potential industrial applications of five novel, thermotolerant, fermentative, yeast strains. World Journal of Microbiology and Biotechnology, 11(3), 304–306. doi:10.1007/bf00367104.

    Article  Google Scholar 

  6. Banat, I. M., Singh, D., & Marchant, R. (1996). The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production. Acta Biotechnologica, 16(2–3), 215–223.

    Article  CAS  Google Scholar 

  7. Blackwell, K. J., Tobin, J. M., & Avery, S. V. (1997). Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 47(2), 180–184.

    Article  CAS  Google Scholar 

  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  9. Brat, D., Boles, E., & Wiedemann, B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(8), 2304–2311.

    Article  CAS  Google Scholar 

  10. Bruinenberg, P. M., Bot, P. H. M., Dijken, J. P., & Scheffers, W. A. (1983). The role of redox balances in the anaerobic fermentation of xylose by yeasts. Applied Microbiology and Biotechnology, 18(5), 287–292. doi:10.1007/bf00500493.

    Article  CAS  Google Scholar 

  11. Bruinenberg, P. M., Bot, P. H. M., Dijken, J. P., & Scheffers, W. A. (1984). NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Applied Microbiology and Biotechnology, 19(4), 256–260. doi:10.1007/bf00251847.

    Article  CAS  Google Scholar 

  12. Ehrensberger, A. H., Elling, R. A., & Wilson, D. K. (2006). Structure-guided engineering of xylitol dehydrogenase cosubstrate specificity. Structure, 14(3), 567–575.

    Article  CAS  Google Scholar 

  13. Fonseca, G. G., Heinzle, E., Wittmann, C., & Gombert, A. K. (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Applied Microbiology and Biotechnology, 79(3), 339–354.

    Article  CAS  Google Scholar 

  14. Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Lukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800.

    Article  CAS  Google Scholar 

  15. Goldman, G. H. (2011). Genetic improvement of xylose utilization by Saccharomyces cerevisiae. In M. S. Buckeridge & G. H. Goldman (Eds.), Routes to cellulosic ethanol (Vol. 3, pp. 153–163). New York: Springer.

    Google Scholar 

  16. Gross, C., Kelleher, M., Iyer, V. R., Brown, P. O., & Winge, D. R. (2000). Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. Journal of Biological Chemistry, 275(41), 32310–32316.

    Article  CAS  Google Scholar 

  17. Hong, J., Tamaki, H., Akiba, S., Yamamoto, K., & Kumagai, H. (2001). Cloning of a gene encoding a highly stable endo-beta-1,4-glucanase from Aspergillus niger and its expression in yeast. Journal of Bioscience and Bioengineering, 92(5), 434–441.

    CAS  Google Scholar 

  18. Hong, J., Wang, Y., Kumagai, H., & Tamaki, H. (2007). Construction of thermotolerant yeast expressing thermostable cellulase genes. Journal of Biotechnology, 130(2), 114–123.

    Article  CAS  Google Scholar 

  19. Hong, S., Wu, J., & Zhao, H. (2010). Cloning, overexpression, purification, and site-directed mutagenesis of xylitol-2-dehydrogenase from Candida albicans. Journal of Molecular Catalysis B: Enzymatic, 62(1), 40–45.

    Article  CAS  Google Scholar 

  20. Ko, B. S., Jung, H. C., & Kim, J. H. (2006). Molecular cloning and characterization of NAD(+)-dependent xylitol dehydrogenase from Candida tropicalis ATCC 20913. Biotechnology Progress, 22(6), 1708–1714.

    CAS  Google Scholar 

  21. Liu, Y. G., & Chen, Y. (2007). High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 43(5), 649-650, 652, 654 passim.

    Google Scholar 

  22. Loukin, S., & Kung, C. (1995). Manganese effectively supports yeast cell-cycle progression in place of calcium. Journal of Cell Biology, 131(4), 1025–1037.

    Article  CAS  Google Scholar 

  23. Mahler, G., & Nudel, C. (2000). Effect of magnesium ions on fermentative and respirative functions in Pichia stipitis under oxygen-restricted growth. Microbiological Research, 155(1), 31–35. doi:10.1016/s0944-5013(00)80019-1.

    Article  CAS  Google Scholar 

  24. Margaritis, A., & Bajpai, P. (1982). Direct fermentation of d-Xylose to ethanol by Kluyveromyces marxianus strains. Applied Environmental Microbiology, 44(5), 1039–1041.

    CAS  Google Scholar 

  25. Navarrete, C., Petrezselyova, S., Barreto, L., Martinez, J. L., Zahradka, J., Arino, J., et al. (2010). Lack of main K plus uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. Fems Yeast Research, 10(5), 508–517. doi:10.1111/j.1567-1364.2010.00630.x.

    CAS  Google Scholar 

  26. Nidetzky, B., Helmer, H., Klimacek, M., Lunzer, R., & Mayer, G. (2003). Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli. Chemico Biological Interactions, 143–144, 533–542.

    Article  Google Scholar 

  27. Nigam, P., Banat, I. M., Singh, D., McHale, A. P., & Marchant, R. (1997). Continuous ethanol production by thermotolerant Kluyveromyces marxianus IMB3 immobilized on mineral Kissiris at 45°C. World Journal of Microbiology & Biotechnology, 13(3), 283–288. doi:10.1023/a:1018578806605.

    Article  CAS  Google Scholar 

  28. Nonklang, S., Abdel-Banat, B. M. A., Cha-Aim, K., Moonjai, N., Hoshida, H., Limtong, S., et al. (2008). High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Applied and Environmental Microbiology, 74(24), 7514–7521.

    Article  CAS  Google Scholar 

  29. Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2002). Purification and characterisation of NAD(+)-dependent xylitol dehydrogenase from Fusarium oxysporum. Biotechnology Letters, 24(24), 2089–2092.

    Article  CAS  Google Scholar 

  30. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & O’Halloran, T. V. (1999). Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science, 284(5415), 805–808.

    Article  CAS  Google Scholar 

  31. Shanks, J. V., & Bailey, J. E. (1988). Estimation of intracellular sugar phosphate concentrations in Saccharomyces cerevisiae using 31P nuclear magnetic resonance spectroscopy. Biotechnology and Bioengineering, 32(9), 1138–1152. doi:10.1002/bit.260320907.

    Article  CAS  Google Scholar 

  32. Takata, G., Poonperm, W., Morimoto, K., & Izumori, K. (2010). Cloning and overexpression of the xylitol dehydrogenase gene from Bacillus pallidus and its application to l-xylulose production. Bioscience, Biotechnology, and Biochemistry, 74(9), 1807–1813.

    Article  CAS  Google Scholar 

  33. Tiwari, M. K., Moon, H. J., Jeya, M., & Lee, J. K. (2010). Cloning and characterization of a thermostable xylitol dehydrogenase from Rhizobium etli CFN42. Applied Microbiology and Biotechnology, 87(2), 571–581.

    Article  CAS  Google Scholar 

  34. Vindelov, J., & Arneborg, N. (2002). Saccharomyces cerevisiae and Zygosaccharomyces mellis exhibit different hyperosmotic shock responses. Yeast, 19(5), 429–439. doi:10.1002/yea.844.

    Article  CAS  Google Scholar 

  35. Watanabe, S., Abu Saleh, A., Pack, S. P., Annaluru, N., Kodaki, T., & Makino, K. (2007). Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology, 153(9), 3044–3054. doi:10.1099/mic.0.2007/007856-0.

    Article  CAS  Google Scholar 

  36. Watanabe, S., Kodaki, T., & Makino, K. (2005). Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. Journal of Biological Chemistry, 280(11), 10340–10349.

    Article  CAS  Google Scholar 

  37. Wilkins, M. R., Mueller, M., Eichling, S., & Banat, I. M. (2008). Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochemistry, 43(4), 346–350.

    Article  CAS  Google Scholar 

  38. Yablochkova, E. N., Bolotnikova, O. I., Mikhailova, N. P., Nemova, N. N., & Ginak, A. I. (2003). The activity of xylose reductase and xylitol dehydrogenase in yeasts. Microbiology, 72(4), 414–417. doi:10.1023/a:1025032404238.

    Article  CAS  Google Scholar 

  39. Yuan, W. J., Zhao, X. Q., Ge, X. M., & Bai, F. W. (2008). Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. Journal of Applied Microbiology, 105(6), 2076–2083.

    Article  CAS  Google Scholar 

  40. Zhang, B., Zhang, L., Wang, D., Gao, X., & Hong, J. (2011). Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. Journal of Industrial Microbiology and Biotechnology,. doi:10.1007/s10295-011-0990-z.

    Google Scholar 

  41. Zhang, Z., Yu, J., & Stanton, R. C. (2000). A method for determination of pyridine nucleotides using a single extract. Analytical Biochemistry, 285(1), 163–167. doi:10.1006/abio.2000.4701.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid from the National Natural Science Foundation of China (Grant No. 31070028), and the project was also sponsored by the National Basic Research Program of China (Grant No. 2011CBA00801), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20093402120027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lulu, L., Ling, Z., Dongmei, W. et al. Identification of a Xylitol Dehydrogenase Gene from Kluyveromyces marxianus NBRC1777. Mol Biotechnol 53, 159–169 (2013). https://doi.org/10.1007/s12033-012-9508-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9508-9

Keywords

Navigation