Skip to main content

Advertisement

Log in

Fucoidan reduced the invasion of oral squamous cell carcinoma cells and modified their effects to macrophages

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Fucoidan is a complex of polysaccharides showing antitumor and immunomodulation properties. Our previous studies found its regulation to myeloid immune cells, including macrophages. Aberrant infiltration and functions of macrophages are commonly found in oral squamous cell carcinoma (OSCC). In this study, we analyzed the effects of fucoidan on invasion of OSCC cells, and their regulation to macrophages, trying to evaluate its role as a potential therapy for OSCC. CAL27 and THP-1-derived macrophages were used as models for OSCC cells and tumor-infiltrated macrophages in the in vitro study, respectively. The effects of fucoidan on invasion of OSCC cells and their recruitment to macrophages were analyzed by transwell assay. KIF4A siRNA transfection was performed to investigate its role in fucoidan-modulated OSCC cells invasion. CCL3-neutralizing antibody was added into the conditioned medium of OSCC cells to evaluate its role in fucoidan-mediated macrophages recruitment and re-education. Fucoidan reduced the invasive potential of CAL27 cells with a decrease of MMP-2 and KIF4A transcription. KIF4A knockdown in CAL27 cells led to decreased invasion and MMP-2 expression. The conditioned medium of fucoidan-treated CAL27 cells promoted recruitment and inflammatory cytokines secretion on THP-1-derived macrophages. Further analysis found that fucoidan increased CCL3 production in CAL27 cells. Blocking CCL3 expression reversed the effects of fucoidan on macrophage recruitment and re-education. Our study found that fucoidan regulated the invasion of OSCC cells and also their recruiting and re-educating effects on macrophages, suggesting it could be a complementary approach in the treatment of OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head Neck Cancer Lancet. 2008;371:1695–709. doi:10.1016/S0140-6736(08)60728-X.

    CAS  PubMed  Google Scholar 

  2. Atashrazm F, Lowenthal RM, Woods GM, Holloway AF, Dickinson JL. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Mar Drugs. 2015;13:2327–46. doi:10.3390/md13042327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bachmann A, Straube A. Kinesins in cell migration. Biochem Soc Trans. 2015;43:79–83. doi:10.1042/BST20140280.

    Article  CAS  PubMed  Google Scholar 

  4. Braun A, Dang K, Buslig F, Baird MA, Davidson MW, Waterman CM, Myers KA. Rac1 and Aurora A regulate MCAK to polarize microtubule growth in migrating endothelial cells. J Cell Biol. 2014;206:97–112. doi:10.1083/jcb.201401063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chinn SB, Myers JN. Oral cavity carcinoma: current management, controversies, and future directions. J Clin Oncol. 2015;33:3269–76. doi:10.1200/JCO.2015.61.2929.

    Article  CAS  PubMed  Google Scholar 

  6. Chizhov AO, et al. A study of fucoidan from the brown seaweed Chorda filum. Carbohydr Res. 1999;320:108–19.

    Article  CAS  PubMed  Google Scholar 

  7. Choi EM, Kim AJ, Kim YO, Hwang JK. Immunomodulating activity of arabinogalactan and fucoidan in vitro. J Med Food. 2005;8:446–53. doi:10.1089/jmf.2005.8.446.

    Article  CAS  PubMed  Google Scholar 

  8. Costa NL, Valadares MC, Souza PP, Mendonca EF, Oliveira JC, Silva TA, Batista AC. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol. 2013;49:216–23. doi:10.1016/j.oraloncology.2012.09.012.

    Article  CAS  PubMed  Google Scholar 

  9. Dong Z, et al. Leptin-mediated regulation of MT1-MMP localization is KIF1B dependent and enhances gastric cancer cell invasion. Carcinogenesis. 2013;34:974–83. doi:10.1093/carcin/bgt028.

    Article  CAS  PubMed  Google Scholar 

  10. Etienne-Manneville S. Microtubules in cell migration. Annu Rev Cell Dev Biol. 2013;29:471–99. doi:10.1146/annurev-cellbio-101011-155711.

    Article  CAS  PubMed  Google Scholar 

  11. Feinmesser M, et al. Histologic and immunohistochemical characterization of tumor and inflammatory infiltrates in oral squamous cell carcinomas treated with local multikine immunotherapy: the macrophage at the front line. Eur Arch Otorhinolaryngol. 2004;261:359–68. doi:10.1007/s00405-003-0615-x.

    Article  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  13. He KF, et al. CD163 + tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. Biomed Res Int. 2014;2014:838632. doi:10.1155/2014/838632.

    PubMed  PubMed Central  Google Scholar 

  14. Heintz TG, Heller JP, Zhao R, Caceres A, Eva R, Fawcett JW. Kinesin KIF4A transports integrin beta1 in developing axons of cortical neurons. Mol Cell Neurosci. 2014;63:60–71. doi:10.1016/j.mcn.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  15. Jewett A, Head C, Cacalano NA. Emerging mechanisms of immunosuppression in oral cancers. J Dent Res. 2006;85:1061–73.

    Article  CAS  PubMed  Google Scholar 

  16. Lee KW, Jeong D, Na K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym. 2013;94:850–6. doi:10.1016/j.carbpol.2013.02.018.

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Gong H, Huang K. Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci. 2013;104:651–6. doi:10.1111/cas.12138.

    Article  CAS  PubMed  Google Scholar 

  18. Lu W, Fox P, Lakonishok M, Davidson MW, Gelfand VI. Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr Biol. 2013;23:1018–23. doi:10.1016/j.cub.2013.04.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maurer M, von Stebut E. Macrophage inflammatory protein-1. Int J Biochem Cell Biol. 2004;36:1882–6. doi:10.1016/j.biocel.2003.10.019.

    Article  CAS  PubMed  Google Scholar 

  20. Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 2005;15:467–76. doi:10.1016/j.tcb.2005.07.006.

    Article  CAS  PubMed  Google Scholar 

  21. Minakawa Y, et al. Kinesin family member 4A: a potential predictor for progression of human oral cancer. PLoS ONE. 2013;8:e85951. doi:10.1371/journal.pone.0085951.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morris EJ, Nader GP, Ramalingam N, Bartolini F, Gundersen GG. Kif4 interacts with EB1 and stabilizes microtubules downstream of Rho-mDia in migrating fibroblasts. PLoS ONE. 2014;9:e91568. doi:10.1371/journal.pone.0091568.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31. doi:10.1038/nrc2444.

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima E, et al. A candidate for cancer gene therapy: MIP-1 alpha gene transfer to an adenocarcinoma cell line reduced tumorigenicity and induced protective immunity in immunocompetent mice. Pharm Res. 1996;13:1896–901.

    Article  CAS  PubMed  Google Scholar 

  25. Nath A, Chattopadhya S, Chattopadhyay U, Sharma NK. Macrophage inflammatory protein (MIP)1alpha and MIP 1beta differentially regulate release of inflammatory cytokines and generation of tumoricidal monocytes in malignancy. Cancer Immunol Immunother. 2006;55:1534–41. doi:10.1007/s00262-006-0149-3.

    Article  CAS  PubMed  Google Scholar 

  26. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61. doi:10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112:453–65.

    Article  CAS  PubMed  Google Scholar 

  28. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. doi:10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quan J, Johnson NW, Zhou G, Parsons PG, Boyle GM, Gao J. Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms. Cancer Metastasis Rev. 2012;31:209–19. doi:10.1007/s10555-011-9335-7.

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, et al. Fucoidan increases TNF-alpha-induced MMP-9 secretion in monocytic cell line U937. Inflamm Res. 2010;59:271–6. doi:10.1007/s00011-009-0095-6.

    Article  CAS  PubMed  Google Scholar 

  31. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi:10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  32. Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discovery. 2014;13:904–27. doi:10.1038/nrd4390.

    Article  CAS  PubMed  Google Scholar 

  33. Wang CQ, et al. Overexpression of Kif2a promotes the progression and metastasis of squamous cell carcinoma of the oral tongue. Oral Oncol. 2010;46:65–9. doi:10.1016/j.oraloncology.2009.11.003.

    Article  PubMed  Google Scholar 

  34. Wang H, et al. Leptin-promoted human extravillous trophoblast invasion is MMP14 dependent and requires the cross talk between Notch1 and PI3K/Akt signaling. Biol Reprod. 2014;90:78. doi:10.1095/biolreprod.113.114876.

    Article  PubMed  Google Scholar 

  35. Weber M, et al. Small oral squamous cell carcinomas with nodal lymphogenic metastasis show increased infiltration of M2 polarized macrophages—an immunohistochemical analysis. J Craniomaxillofac Surg. 2014;42:1087–94. doi:10.1016/j.jcms.2014.01.035.

    Article  PubMed  Google Scholar 

  36. Wehrhan F, et al. Increased malignancy of oral squamous cell carcinomas (oscc) is associated with macrophage polarization in regional lymph nodes—an immunohistochemical study. BMC Cancer. 2014;14:522. doi:10.1186/1471-2407-14-522.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wiesner C, Faix J, Himmel M, Bentzien F, Linder S. KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages. Blood. 2010;116:1559–69. doi:10.1182/blood-2009-12-257089.

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, Li YY, Matsushima K, Baba T, Mukaida N. CCL3-CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J Immunol. 2008;181:6384–93.

    Article  CAS  PubMed  Google Scholar 

  39. Yang M, et al. Fucoidan stimulation induces a functional maturation of human monocyte-derived dendritic cells. Int Immunopharmacol. 2008;8:1754–60. doi:10.1016/j.intimp.2008.08.007.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao P, et al. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol Immunol. 2015;12:692–9. doi:10.1038/cmi.2014.108.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 81271105, 31470885 and 31270971).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengcai Wei or Xun Qu.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Junda Lin and Ketao Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wang, K., Wang, H. et al. Fucoidan reduced the invasion of oral squamous cell carcinoma cells and modified their effects to macrophages. Med Oncol 34, 9 (2017). https://doi.org/10.1007/s12032-016-0858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0858-1

Keywords

Navigation