Skip to main content

Advertisement

Log in

Correlation between indoleamine 2,3 dioxygenase mRNA and CDKN2A/p16 mRNA: a combined strategy to cervical cancer diagnosis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cervical cancer (CC) is one of the most common cancers among women worldwide. The relation of the human papillomavirus (HPV) with CC and its precursor lesions was first suspected for over 40 years. The indoleamine 2,3 dioxygenase (IDO) is an immune modulator enzyme responsible for the immune system tissue protection mechanism, which may be the key to the tumoural persistence. HPV oncoprotein E7 promotes the increase in cyclin-dependent kinase inhibitor p16 (CDKN2A/p16). The isolated and combined analysis of CDKN2A/p16 mRNA to CC diagnosis was done with promising results. The aim of this study is to evaluate the correlation between IDO mRNA and CDKN2A/p16 mRNA. We will explore the potential of both as diagnostic tools. RNA was extracted from tissue samples. cDNA was generated with High Capacity RNA-to-cDNA kit. The real-time PCR results were analysed using nonlinear curve estimation, ROC curve, Chi-squared test, the proportion of variance explained and Galen and Gambino formulas. From 270 patients attended, colposcopy examination was performed in 110 and the biopsy in 75 patients. We found a positive correlation in patients older than 28 years old with low-risk lesions, but the correlation is lost in high-risk lesions. Although cytology, IDO mRNA and CDKN2A/p16 mRNA could not differentiate the risk groups, IDO combined with CDKN2A/p16 mRNA results could (p = 0.028). The best diagnostic result was achieved by IDO coupled with CDKN2A/p16 mRNA, which may considerably increase the sensitivity of screening for CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Girianelli VR, Gamarra CJ, Azevedo e Silva G. Disparities in cervical and breast cancer mortality in Brazil. Rev Saude Publ. 2014;48(3):459–67.

    Article  Google Scholar 

  2. Bauer HM, Ting Y, Greer CE, Chambers JC, Tashiro CJ, Chimera J, et al. Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA. 1991;265(4):472–7.

    Article  CAS  PubMed  Google Scholar 

  3. Koutsky LA, Holmes KK, Critchlow CW, Stevens CE, Paavonen J, Beckmann AM, et al. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med. 1992;327(18):1272–8. doi:10.1056/NEJM199210293271804.

    Article  CAS  PubMed  Google Scholar 

  4. Psyrri A, DiMaio D. Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol. 2008;5(1):24–31. doi:10.1038/ncponc0984.

    Article  CAS  PubMed  Google Scholar 

  5. Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50. doi:10.1038/nrc798.

    Article  CAS  PubMed  Google Scholar 

  6. Zur Hausen H. Papillomaviruses in human cancers. Proc Assoc Am Phys. 1999;111(6):581–7.

    Article  CAS  PubMed  Google Scholar 

  7. Jayshree RS, Sreenivas A, Tessy M, Krishna S. Cell intrinsic and extrinsic factors in cervical carcinogenesis. Indian J Med Res. 2009;130(3):286–95.

    CAS  PubMed  Google Scholar 

  8. Brake T, Lambert PF. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci USA. 2005;102(7):2490–5. doi:10.1073/pnas.0409883102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stanley M. Chapter 17: genital human papillomavirus infections–current and prospective therapies. J Natl Cancer Inst Monogr. 2003;31:117–24.

    Article  Google Scholar 

  10. Kobayashi A, Weinberg V, Darragh T, Smith-McCune K. Evolving immunosuppressive microenvironment during human cervical carcinogenesis. Mucosal Immunol. 2008;1(5):412–20. doi:10.1038/mi.2008.33.

    Article  CAS  PubMed  Google Scholar 

  11. Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol. 2009;41(3):467–71. doi:10.1016/j.biocel.2008.01.005.

    Article  CAS  PubMed  Google Scholar 

  12. Kudo Y, Boyd CA, Spyropoulou I, Redman CW, Takikawa O, Katsuki T, et al. Indoleamine 2,3-dioxygenase: distribution and function in the developing human placenta. J Reprod Immunol. 2004;61(2):87–98. doi:10.1016/j.jri.2003.11.004.

    Article  CAS  PubMed  Google Scholar 

  13. Takikawa O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem Biophys Res Commun. 2005;338(1):12–9. doi:10.1016/j.bbrc.2005.09.032.

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura T, Shima T, Saeki A, Hidaka T, Nakashima A, Takikawa O, et al. Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci. 2007;98(6):874–81. doi:10.1111/j.1349-7006.2007.00470.x.

    Article  CAS  PubMed  Google Scholar 

  15. Sato N, Saga Y, Mizukami H, Wang D, Takahashi S, Nonaka H, et al. Downregulation of indoleamine-2,3-dioxygenase in cervical cancer cells suppresses tumor growth by promoting natural killer cell accumulation. Oncol Rep. 2012;28(5):1574–8. doi:10.3892/or.2012.1984.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gustinucci D, Giorgi Rossi P, Cesarini E, Broccolini M, Bulletti S, Carlani A, et al. Use of Cytology, E6/E7 mRNA, and p16INK4a-Ki-67 to define the management of human papillomavirus (HPV)-positive women in cervical cancer screening. Am J Clin Pathol. 2016;145(1):35–45. doi:10.1093/ajcp/aqv019.

    Article  PubMed  Google Scholar 

  17. Sibin MK, Bhat DI, Narasingarao KV, Lavanya C, Chetan GK. CDKN2A (p16) mRNA decreased expression is a marker of poor prognosis in malignant high-grade glioma. Tumour Biol. 2015;36(10):7607–14. doi:10.1007/s13277-015-3480-5.

    Article  CAS  PubMed  Google Scholar 

  18. Wilkinson EJ. Pap smears and screening for cervical neoplasia. Clin Obstet Gynecol. 1990;33(4):817–25.

    Article  CAS  PubMed  Google Scholar 

  19. Camacho CP, Lindsey SC, Melo MC, Yang JH, Germano-Neto F, FeO Valente, et al. Measurement of calcitonin and calcitonin gene-related peptide mRNA refines the management of patients with medullary thyroid cancer and may replace calcitonin-stimulation tests. Thyroid. 2013;23(3):308–16. doi:10.1089/thy.2012.0361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu A, Huang W, Zeng G, Ma X, Zhou X, Wang Y, et al. Expression of the Annexin A1 gene is associated with suppression of growth, invasion and metastasis of nasopharyngeal carcinoma. Mol Med Rep. 2014;10(6):3059–67. doi:10.3892/mmr.2014.2656.

    CAS  PubMed  Google Scholar 

  21. Konecny GE, Wang C, Winterhoff B, Kalli KR, Dering J, et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J Natl Cancer Inst. 2014. doi:10.1093/jnci/dju249.

    PubMed  PubMed Central  Google Scholar 

  22. Duick DS, Klopper JP, Diggans JC, Friedman L, Kennedy GC, Lanman RB, et al. The impact of benign gene expression classifier test results on the endocrinologist-patient decision to operate on patients with thyroid nodules with indeterminate fine-needle aspiration cytopathology. Thyroid. 2012;22(10):996–1001. doi:10.1089/thy.2012.0180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Del Pino M, Svanholm-Barrie C, Torné A, Marimon L, Gaber J, Sagasta A, et al. mRNA biomarker detection in liquid-based cytology: a new approach in the prevention of cervical cancer. Mod Pathol. 2014. doi:10.1038/modpathol.2014.106.

    Google Scholar 

  24. Krishnappa P, Mohamad I, Lin Y, Barua A. Expression of P16 in high-risk human papillomavirus related lesions of the uterine cervix in a government hospital, Malaysia. Diagn Pathol. 2014;9(1):202. doi:10.1186/s13000-014-0202-z.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ikenberg H, Bergeron C, Schmidt D, Griesser H, Alameda F, Angeloni C, et al. Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J Natl Cancer Inst. 2013;105(20):1550–7. doi:10.1093/jnci/djt235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ordi J, Sagasta A, Munmany M, Rodríguez-Carunchio L, Torné A, del Pino M. Usefulness of p16/Ki67 immunostaining in the triage of women referred to colposcopy. Cancer Cytopathol. 2014;122(3):227–35.

    Article  PubMed  Google Scholar 

  27. Furuzawa-Carballeda J, Lima G, Alberú J, Palafox D, Uribe-Uribe N, Morales-Buenrostro LE, et al. Infiltrating cellular pattern in kidney graft biopsies translates into forkhead box protein 3 up-regulation and p16INK4α senescence protein down-regulation in patients treated with belatacept compared to cyclosporin A. Clin Exp Immunol. 2012;167(2):330–7. doi:10.1111/j.1365-2249.2011.04504.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hascitha J, Priya R, Jayavelu S, Dhandapani H, Selvaluxmy G, Sunder Singh S, et al. Analysis of kynurenine/tryptophan ratio and expression of IDO1 and 2 mRNA in tumour tissue of cervical cancer patients. Clin Biochem. 2016. doi:10.1016/j.clinbiochem.2016.04.008.

    PubMed  Google Scholar 

  29. Ferns DM, Kema IP, Buist MR, Nijman HW, Kenter GG, Jordanova ES. Indoleamine-2,3-dioxygenase (IDO) metabolic activity is detrimental for cervical cancer patient survival. Oncoimmunology. 2015;4(2):e981457. doi:10.4161/2162402X.2014.981457.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leung BS, Stout LE, Shaskan EG, Thompson RM. Differential induction of indoleamine-2,3-dioxygenase (IDO) by interferon-gamma in human gynecologic cancer cells. Cancer Lett. 1992;66(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  31. Fotopoulou C, Sehouli J, Pschowski R, Von Haehling S, Domanska G, Braicu EI, et al. Systemic changes of tryptophan catabolites via the indoleamine-2,3-dioxygenase pathway in primary cervical cancer. Anticancer Res. 2011;31(8):2629–35.

    CAS  PubMed  Google Scholar 

  32. Sucher R, Kurz K, Weiss G, Margreiter R, Fuchs D, Brandacher G. IDO-mediated tryptophan degradation in the pathogenesis of malignant tumor disease. Int J Tryptophan Res. 2010;3:113–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Inaba T, Ino K, Kajiyama H, Shibata K, Yamamoto E, Kondo S, et al. Indoleamine 2,3-dioxygenase expression predicts impaired survival of invasive cervical cancer patients treated with radical hysterectomy. Gynecol Oncol. 2010;117(3):423–8. doi:10.1016/j.ygyno.2010.02.028.

    Article  CAS  PubMed  Google Scholar 

  34. Feng Q, Wei H, Morihara J, Stern J, Yu M, Kiviat N, et al. Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma. Gynecol Oncol. 2012;127(2):412–9. doi:10.1016/j.ygyno.2012.07.098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mittal D, Kassianos AJ, Tran LS, Bergot AS, Gosmann C, Hofmann J, et al. Indoleamine 2,3-dioxygenase activity contributes to local immune suppression in the skin expressing human papillomavirus oncoprotein e7. J Invest Dermatol. 2013;133(12):2686–94. doi:10.1038/jid.2013.222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Longatto-Filho A, Etlinger D, Pereira SM, Kanamura CT, di Loreto C, GaC Santos, et al. The association of p16(INK4A) and fragile histidine triad gene expression and cervical lesions. J Low Genit Tract Dis. 2007;11(3):151–7. doi:10.1097/LGT.0b013e31802efb9e.

    Article  PubMed  Google Scholar 

  37. Wang SS, Trunk M, Schiffman M, Herrero R, Sherman ME, Burk RD, et al. Validation of p16INK4a as a marker of oncogenic human papillomavirus infection in cervical biopsies from a population-based cohort in Costa Rica. Cancer Epidemiol Biomark Prev. 2004;13(8):1355–60.

    CAS  Google Scholar 

  38. Tsoumpou I, Arbyn M, Kyrgiou M, Wentzensen N, Koliopoulos G, Martin-Hirsch P, et al. p16(INK4a) immunostaining in cytological and histological specimens from the uterine cervix: a systematic review and meta-analysis. Cancer Treat Rev. 2009;35(3):210–20. doi:10.1016/j.ctrv.2008.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No specific funding was obtained to support the conduct of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleber P. Camacho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saffi Junior, M.C., Duarte, I.d.S., Brito, R.B.d.O. et al. Correlation between indoleamine 2,3 dioxygenase mRNA and CDKN2A/p16 mRNA: a combined strategy to cervical cancer diagnosis. Med Oncol 33, 132 (2016). https://doi.org/10.1007/s12032-016-0844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0844-7

Keywords

Navigation