Skip to main content

Advertisement

Log in

Tumor necrosis factor-α (TNF-α) stimulates the epithelial–mesenchymal transition regulator Snail in cholangiocarcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Epithelial–mesenchymal transition (EMT) is a series of events during which epithelial cells lose many of their epithelial characteristics and take on properties that are typical of mesenchymal cells that lack cell–cell adhesion properties. EMT may be activated by various types of growth factors or inflammatory cytokines. In many types of epithelial cancers, the EMT-derived tumor cells are susceptible to metastasis. During tumor progression, epithelial cells acquire a gene expression pattern closely resembling that of mesenchymal cells. This study aimed to investigate the expression of the EMT-associated transcription factor Snail and an adhesion molecule E-cadherin in cholangiocarcinoma (CCA) tissues. The effect of TNF-α on EMT activation in CCA cells was also demonstrated. The qRT-PCR analysis revealed that Snail expression significantly increased in CCA (P = 0.01) and was correlated with tumor metastasis (P = 0.02). The expression of Snail was inversely associated with E-cadherin (P = 0.004). The stimulation of TNF-α enhances migration behavior and showed significantly induced expression of Snail in CCA cell lines, whereas expression of E-cadherin and CK-19 (the epithelial marker) was reduced. Immunofluorescence analysis revealed that TNF-α-treated CCA cell lines increased nuclear translocation of Snail, whereas E-cadherin was dramatically decreased. Our findings suggest that the changes in the expression of Snail or E-cadherin might regulate EMT development in CCA resulting in promoting tumor progression. Overexpression of Snail could be used as a prognostic marker for monitoring the treatment efficiency of CCA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McLean L, Patel T. Racial and ethnic variations in the epidemiology of intrahepatic cholangiocarcinoma in the United States. Liver Int. 2006;26(9):1047–53.

    Article  PubMed  Google Scholar 

  2. Haswell-Elkins MR, Mairiang E, Mairiang P, Chaiyakum J, Chamadol N, Loapaiboon V, et al. Cross-sectional study of Opisthorchis viverrini infection and cholangiocarcinoma in communities within a high-risk area in northeast Thailand. Int J Cancer. 1994;59(4):505–9.

    Article  PubMed  CAS  Google Scholar 

  3. Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, et al. Liver fluke induces cholangiocarcinoma. PLoS Med. 2007;4(7):e201.

    Article  PubMed  Google Scholar 

  4. Yongvanit P, Pinlaor S, Bartsch H. Oxidative and nitrative DNA damage: key events in opisthorchiasis-induced carcinogenesis. Parasitol Int. 2012;61(1):130–5.

    Article  PubMed  CAS  Google Scholar 

  5. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172(7):973–81.

    Article  PubMed  CAS  Google Scholar 

  6. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.

    Article  PubMed  CAS  Google Scholar 

  7. Yang J, Weinberg RA. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.

    Article  PubMed  CAS  Google Scholar 

  8. Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 1999;56(4):1455–67.

    Article  PubMed  CAS  Google Scholar 

  9. Morali OG, Delmas V, Moore R, Jeanney C, Thiery JP, Larue L. IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene. 2001;20(36):4942–50.

    Article  PubMed  CAS  Google Scholar 

  10. Okada H, Danoff TM, Kalluri R, Neilson EG. Early role of Fsp1 in epithelial–mesenchymal transformation. Am J Physiol. 1997;273(4 Pt 2):F563–74.

    PubMed  CAS  Google Scholar 

  11. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, et al. Role of basic fibroblast growth factor-2 in epithelial–mesenchymal transformation. Kidney Int. 2002;61(5):1714–28.

    Article  PubMed  CAS  Google Scholar 

  12. Subimerb C, Pinlaor S, Lulitanond V, Khuntikeo N, Okada S, McGrath MS, et al. Circulating CD14(+) CD16(+) monocyte levels predict tissue invasive character of cholangiocarcinoma. Clin Exp Immunol. 2010;161(3):471–9.

    Article  PubMed  CAS  Google Scholar 

  13. Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, et al. Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial–mesenchymal transition in renal cell carcinoma cells. Cancer Sci. 2008;99(5):905–13.

    Article  PubMed  CAS  Google Scholar 

  14. Li CW, Xia W, Huo L, Lim SO, Wu Y, Hsu JL, et al. Epithelial–mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res. 2012;72(5):1290–300.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi E, Nagano O, Ishimoto T, Yae T, Suzuki Y, Shinoda T, et al. Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial–mesenchymal transition by promoting hyaluronan-CD44-moesin interaction. J Biol Chem. 2010;285(6):4060–73.

    Article  PubMed  CAS  Google Scholar 

  16. Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 2008;27(55):6958–69.

    Article  PubMed  CAS  Google Scholar 

  17. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.

    Article  PubMed  CAS  Google Scholar 

  18. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83.

    Article  PubMed  CAS  Google Scholar 

  19. Becker KF, Rosivatz E, Blechschmidt K, Kremmer E, Sarbia M, Hofler H. Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs. 2007;185(1–3):204–12.

    Article  PubMed  CAS  Google Scholar 

  20. Blechschmidt K, Sassen S, Schmalfeldt B, Schuster T, Hofler H, Becker KF. The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. Br J Cancer. 2008;98(2):489–95.

    Article  PubMed  CAS  Google Scholar 

  21. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, et al. Differential expression of the epithelial–mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002;161(5):1881–91.

    Article  PubMed  CAS  Google Scholar 

  22. Hou F, Yuan W, Huang J, Qian L, Chen Z, Ge J et al. Overexpression of EphA2 correlates with epithelial–mesenchymal transition-related proteins in gastric cancer and their prognostic importance for postoperative patients. Med Oncol. 2011.

  23. Huang J, Qiu Y, Chen G, Huang L, He J. The relationship between Bmi-1 and the epithelial–mesenchymal transition in lung squamous cell carcinoma. Med Oncol. 2011.

  24. Zhao N, Sun BC, Zhao XL, Liu ZY, Sun T, Qiu ZQ et al. Coexpression of Bcl-2 with epithelial–mesenchymal transition regulators is a prognostic indicator in hepatocellular carcinoma. Med Oncol. 2012.

  25. Lee MJ, Yu GR, Yoo HJ, Kim JH, Yoon BI, Choi YK, et al. ANXA8 down-regulation by EGF-FOXO4 signaling is involved in cell scattering and tumor metastasis of cholangiocarcinoma. Gastroenterology. 2009;137(3):1138–50. 50 e1–9.

    Article  PubMed  CAS  Google Scholar 

  26. Sato Y, Harada K, Itatsu K, Ikeda H, Kakuda Y, Shimomura S, et al. Epithelial–mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma. Am J Pathol. 2010;177(1):141–52.

    Article  PubMed  CAS  Google Scholar 

  27. Tanimura Y, Kokuryo T, Tsunoda N, Yamazaki Y, Oda K, Nimura Y, et al. Tumor necrosis factor alpha promotes invasiveness of cholangiocarcinoma cells via its receptor, TNFR2. Cancer Lett. 2005;219(2):205–13.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou C, Nitschke AM, Xiong W, Zhang Q, Tang Y, Bloch M, et al. Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial–mesenchymal transition phenotype. Breast Cancer Res. 2008;10(6):R105.

    Article  PubMed  Google Scholar 

  29. Come C, Magnino F, Bibeau F, De Santa Barbara P, Becker KF, Theillet C, et al. Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res. 2006;12(18):5395–402.

    Article  PubMed  CAS  Google Scholar 

  30. Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103(8):1631–43.

    Article  PubMed  CAS  Google Scholar 

  31. Miyoshi A, Kitajima Y, Kido S, Shimonishi T, Matsuyama S, Kitahara K, et al. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer. 2005;92(2):252–8.

    PubMed  CAS  Google Scholar 

  32. Roy HK, Smyrk TC, Koetsier J, Victor TA, Wali RK. The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig Dis Sci. 2005;50(1):42–6.

    Article  PubMed  CAS  Google Scholar 

  33. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998;153(2):333–9.

    Article  PubMed  CAS  Google Scholar 

  34. Kwok WK, Ling MT, Lee TW, Lau TC, Zhou C, Zhang X, et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 2005;65(12):5153–62.

    Article  PubMed  CAS  Google Scholar 

  35. Soini Y, Tuhkanen H, Sironen R, Virtanen I, Kataja V, Auvinen P, et al. Transcription factors zeb1, twist and snai1 in breast carcinoma. BMC Cancer. 2011;11:73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHeP-GMS), Khon Kaen University, Khon Kaen University Research Fund (Grant No. 541901). We wish to acknowledge the support of the Khon Kaen University Publication Clinic, Research and Technology Transfer Affairs, Khon Kaen University, for their assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puangrat Yongvanit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Techasen, A., Namwat, N., Loilome, W. et al. Tumor necrosis factor-α (TNF-α) stimulates the epithelial–mesenchymal transition regulator Snail in cholangiocarcinoma. Med Oncol 29, 3083–3091 (2012). https://doi.org/10.1007/s12032-012-0305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-012-0305-x

Keywords

Navigation