Skip to main content

Advertisement

Log in

Slug inhibition upregulates radiation-induced PUMA activity leading to apoptosis in cholangiocarcinomas

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Resistance of cholangiocarcinoma to irradiation therapy is a major problem in cancer treatment. Slug, a snail family transcription factor, is a suppressor of PUMA (p53 upregulated modulator of apoptosis), which has been shown to be involved in the control of apoptosis. In this study, we investigated whether the modulation of Slug expression, using adeno-associated-virus-mediated transfer of siRNA targeting Slug gene (rAAV2-Slug siRNA), affects cholangiocarcinoma sensitivity to radiation. In the present study, we used rAAV2-Slug siRNA to downregulate the expression of Slug in QBC939 cholangiocarcinoma cell lines in vitro before γ-irradiation. In vivo studies were done with orthotopic cholangiocarcinoma, and radiosensitivity was evaluated both in vitro and in vivo. rAAV2-Slug siRNA transfection resulted in downregulation of the levels of Slug in QBC939 cells. In addition, rAAV2-Slug siRNA, in combination with radiation, increased levels of the PUMA, which contributes to the radiosensitivity of cholangiocarcinomas. Finally, treatment with rAAV2-Slug siRNA plus γ-irradiation completely regressed tumor growth in orthotopic cholangiocarcinomas model. In summary, integrating gene therapy with radiotherapy could have a synergistic effect, thereby improving the survival of patients with cholangiocarcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med. 1999;341:1368–78.

    Article  PubMed  Google Scholar 

  2. Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology. 2005;128:1655–67.

    Article  PubMed  Google Scholar 

  3. Nair S, Shiv Kumar K, Thuluvath PJ. Mortality from hepatocellular and biliary cancers: changing epidemiological trends. Am J Gastroenterol. 2002;97:167–71.

    Article  PubMed  Google Scholar 

  4. Patel T. Increasing incidence and mortality of primary intrahepatic cholangio-carcinoma in the United States. Hepatology. 2001;33:1353–7.

    Article  PubMed  CAS  Google Scholar 

  5. Olnes MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology. 2004;66:167–79.

    Article  PubMed  Google Scholar 

  6. Jarnagin WR, Fong Y, DeMatteo RP, et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg. 2001;234:507–17. discussion 517–519.

    Article  PubMed  CAS  Google Scholar 

  7. Witzigmann H, Berr F, Ringel U, et al. Surgical and palliative management and outcome in 184 patients with hilar cholangiocarcinoma: palliative photodynamic therapy plus stenting is comparable to r1/r2 resection. Ann Surg. 2006;244:230–9.

    Article  PubMed  Google Scholar 

  8. Sasaki A, Aramaki M, Kawano K, et al. Intrahepatic peripheral cholangiocarcinoma: mode of spread and choice of surgical treatment. Br J Surg. 1998;85:1206–9.

    Article  PubMed  CAS  Google Scholar 

  9. Nakeeb A, Pitt HA, Sohn TA, et al. Cholangiocarcinoma: a spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224:463–73. discussion 473–475.

    Article  PubMed  CAS  Google Scholar 

  10. Washburn WK, Lewis WD, Jenkins RL. Aggressive surgical resection for cholangiocarcinoma. Arch Surg. 1995;130:270–6.

    Article  PubMed  CAS  Google Scholar 

  11. Patel T, Singh P. Cholangiocarcinoma: emerging approaches to a challenging cancer. Curr Opin Gastroenterol. 2007;23:317–23.

    Article  PubMed  Google Scholar 

  12. Reddy SB, Patel T. Current approaches to the diagnosis and treatment of cholangiocarcinoma. Curr Gastroenterol Rep. 2006;8:30–7.

    Article  PubMed  Google Scholar 

  13. Mansfield SD, Barakat O, Charnley RM, et al. Management of hilar cholangiocarcinoma in the North of England: pathology, treatment, and outcome. World J Gastroenterol. 2005;11:7625–30.

    PubMed  CAS  Google Scholar 

  14. Wiedmann MW, Mössner J. Molecular targeted therapy of biliary tract cancer–results of the first clinical studies. Curr Drug Targets. 2010;11:834–50.

    Article  PubMed  CAS  Google Scholar 

  15. Briggs CD, Neal CP, Mann CD, Steward WP, Manson MM, Berry DP. Prognostic molecular markers in cholangiocarcinoma: a systematic review. Eur J Cancer. 2009;45:33–47.

    Article  PubMed  CAS  Google Scholar 

  16. Coultas L, Strasser A. The molecular control of DNA damage-induced cell death. Apoptosis. 2000;5:491–507.

    Article  PubMed  CAS  Google Scholar 

  17. He GJ, Sun DD, Ji DW, Sui DM, Yu FQ, Gao QY, Dai XW, Gao H, Jiang T, Dai CL. Induction of biliary cholangiocarcinoma cell apoptosis by 103Pd cholangial radioactive stent gamma-rays. Chin Med J (Engl). 2008;121:1020–4.

    CAS  Google Scholar 

  18. Yabuuchi S, Katayose Y, Oda A, Mizuma M, Shirasou S, Sasaki T, Yamamoto K, Oikawa M, Rikiyama T, Onogawa T, Yoshida H, Ohtuska H, Motoi F, Egawa S, Unno M. ZD1839 (IRESSA) stabilizes p27Kip1 and enhances radiosensitivity in cholangiocarcinoma cell lines. Anticancer Res. 2009;29:1169–80.

    PubMed  CAS  Google Scholar 

  19. Bianco C, Tortora G, Bianco R, Caputo R, Veneziani BM, Caputo R, Damiano V, Troiani T, Fontanini G, Raben D, Pepe S, Bianco AR, Ciardiello F. Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa). Clin Cancer Res. 2002;8:3250–8.

    PubMed  CAS  Google Scholar 

  20. Nieto MA. The Snail superfamily of zinc finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66.

    Article  PubMed  CAS  Google Scholar 

  21. Ros MA, Sefton M, Nieto MA. Slug, a zinc-finger gene previously implicated in the early patterning of the mesodermand the neural crest, is also involved in chick limb development. Development. 1997;124:1821–9.

    PubMed  CAS  Google Scholar 

  22. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein Slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol. 1997;137:1403–19.

    Article  PubMed  CAS  Google Scholar 

  23. Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW, Naber SP, Weinberg RA. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet. 2005;37:1047–54.

    Article  PubMed  CAS  Google Scholar 

  24. Kurrey NK, Bapat SA. Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol. 2005;97:155–65.

    Article  PubMed  CAS  Google Scholar 

  25. Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005;12:488–96.

    Article  PubMed  Google Scholar 

  26. Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M, Gutierrez-Cianca N, Flores T, Gutierrez-Adan A, Pintado B, Sanchez-Martin M, Sanchez-Garcia I. SLUG in cancer development. Oncogene. 2005;24:3073–82.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang K, Wang D, Zhang S, Jiao X, Li C, Wang X, Yu Q, Cui H. The E-cadherin repressor slug and progression of human hilar cholangiocarcinoma. J Exp Clin Cancer Res. 2010;1(29):88.

    Article  Google Scholar 

  28. Zhang KJ, Zhang BY, Zhang KP, Tang LM, Liu SS, Zhu DM, Zhang DL. Clinicopathologic significance of slug expression in human intrahepatic cholangiocarcinoma. World J Gastroenterol. 2010;16:2554–7.

    Article  PubMed  Google Scholar 

  29. Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene. 2000;257:1–12.

    Article  PubMed  CAS  Google Scholar 

  30. Inukai T, Inoue A, Kurosawa H, et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell. 1999;4:343–52.

    Article  PubMed  CAS  Google Scholar 

  31. Kajita M, McClinic KN, Wade PA. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol. 2004;24:7559–66.

    Article  PubMed  CAS  Google Scholar 

  32. Kajita M, McClinic KN, Wade PA. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol. 2004;24:7559–66.

    Article  PubMed  CAS  Google Scholar 

  33. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 2009;27:2059–68.

    Article  PubMed  CAS  Google Scholar 

  34. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  PubMed  CAS  Google Scholar 

  35. Guaita S, Puig I, Franci C, et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002;277:39209–16.

    Article  PubMed  CAS  Google Scholar 

  36. Cha HS, Bae EK, Ahn JK, Lee J, Ahn KS, Koh EM. Slug suppression induces apoptosis via Puma transactivation in rheumatoid arthritis fibroblast-like synoviocytes treated with hydrogen peroxide. Exp Mol Med. 2010;42:428–36.

    Article  PubMed  CAS  Google Scholar 

  37. Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM, Look AT. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell. 2005;123:641–53.

    Article  PubMed  CAS  Google Scholar 

  38. Yu J, Zhang L. No PUMA no death: implications for p53-dependent apoptosis. Cancer Cell. 2003;4:248–9.

    Article  PubMed  CAS  Google Scholar 

  39. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001;7:673–82.

    Article  PubMed  CAS  Google Scholar 

  40. Nakano K, Vousden KH. PUMA, anovel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94.

    Article  PubMed  CAS  Google Scholar 

  41. Han J, Flemington C, Houghton AB. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A. 2001;98:11318–23.

    Article  PubMed  CAS  Google Scholar 

  42. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003;100:1931–6.

    Article  PubMed  CAS  Google Scholar 

  43. Villunger A, Michalak EM, Coultas L. p 53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science. 2003;302:1036–8.

    Article  PubMed  CAS  Google Scholar 

  44. Jeffers JR, Parganas E, Lee Y. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 2003;4:321–8.

    Article  PubMed  CAS  Google Scholar 

  45. Coureuil M, Ugolin N, Tavernier M, Chevillard S, Barroca V, Fouchet P, Allemand I. Puma and trail/dr5 pathways control radiation-induced apoptosis in distinct populations of testicular progenitors. PLoS One. 2010;5:e12134.

    Article  PubMed  Google Scholar 

  46. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, Adams JM, Strasser A, Villunger A. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood. 2005;106:4131–8.

    Article  PubMed  CAS  Google Scholar 

  47. Yu H, Shen H, Yuan Y, XuFeng R, Hu X, Garrison SP, Zhang L, Yu J, Zambetti GP, Cheng T. Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation. Blood. 2010;115:3472–80.

    Article  PubMed  CAS  Google Scholar 

  48. Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP, Zhang L, Yu J. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell. 2008;2:576–83.

    Article  PubMed  CAS  Google Scholar 

  49. Maier P, Herskind C, Zeller WJ, Wenz F. SLUG as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector. Radiat Oncol. 2009;3:8174–5.

    Google Scholar 

  50. Yang H, Wan H, Yu J, Zhang X, Zhang L, Fu M, Liang X, Zhan Q, Lin C. Administration of PUMA adenovirus increases the sensitivity of esophageal cancer cells to anticancer drugs. Cancer Biol Ther. 2006;5:380–5.

    Article  Google Scholar 

  51. Yu J, Yue W, Wu B, Zhang L. PUMA sensitizes lung cancer cells to chemotherapeutic agents and irradiation. Clin Cancer Res. 2006;12:2928–36.

    Article  PubMed  Google Scholar 

  52. Bacqueville D, Deleris P, Mendre C, et al. Characterization of a G protein-activated phosphoinositide 3-kinase in vascular smooth muscle cell nuclei. J Biol Chem. 2001;276:22170–6.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang K, Zhang S, Jiao X, Wang H, Zhang D, Niu Z, Shen Y, Lv L, Zhou Y. Slug regulates proliferation and invasiveness of esophageal adenocarcinoma cells in vitro and vivo. Med Oncol. 2010.

  54. Haupt S, Alsheich-Bartok O, Haupt Y. Clues from worms: a Slug at Puma promotes the survival of blood progenitors. Cell Death Differ. 2006;13:913–5.

    Article  PubMed  CAS  Google Scholar 

  55. Vannini I, Bonafe M, Tesei A, Rosetti M, Fabbri F, Storci G, Ulivi P, Brigliadori G, Amadori D, Zoli W. Short interfering RNA directed against the SLUG gene increases cell death induction in human melanoma cell lines exposed to cisplatin and fotemustine. Cell Oncol. 2007;29:279–87.

    PubMed  CAS  Google Scholar 

  56. Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27(Suppl 1):S71–83.

    Article  PubMed  CAS  Google Scholar 

  57. Michalak EM, Vandenberg CJ, Delbridge AR, Wu L, Scott CL, Adams JM, Strasser A. Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev. 2010;24:1608–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We take this opportunity to specifically thank the reviewers and editors for their kind instructions that may be helpful for our further studies.

Conflict of interest

The authors promised there were not any possible conflicts of interest in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejun Zhang.

Additional information

Kejun Zhang and Bingyuan Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Zhang, B., Lu, Y. et al. Slug inhibition upregulates radiation-induced PUMA activity leading to apoptosis in cholangiocarcinomas. Med Oncol 28 (Suppl 1), 301–309 (2011). https://doi.org/10.1007/s12032-010-9759-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9759-x

Keywords

Navigation