Skip to main content

Advertisement

Log in

The Neuropeptide Orexin-A Inhibits the GABAA Receptor by PKC and Ca2+/CaMKII-Dependent Phosphorylation of Its β1 Subunit

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Orexin-A and orexin-B (Ox-A, Ox-B) are neuropeptides produced by a small number of neurons that originate in the hypothalamus and project widely in the brain. Only discovered in 1998, the orexins are already known to regulate several behaviours. Most prominently, they help to stabilise the waking state, a role with demonstrated significance in the clinical management of narcolepsy and insomnia. Orexins bind to G-protein-coupled receptors (predominantly postsynaptic) of two subtypes, OX1R and OX2R. The primary effect of Ox-OXR binding is a direct depolarising influence mediated by cell membrane cation channels, but a wide variety of secondary effects, both pre- and postsynaptic, are also emerging. Given that inhibitory GABAergic neurons also influence orexin-regulated behaviours, crosstalk between the two systems is expected, but at the cellular level, little is known and possible mechanisms remain unidentified. Here, we have used an expression system approach to examine the feasibility, and nature, of possible postsynaptic crosstalk between Ox-A and the GABAA receptor (GABAAR), the brain’s main inhibitory neuroreceptor. When HEK293 cells transfected with OX1R and the α1, β1, and γ2S subunits of GABAAR were exposed to Ox-A, GABA-induced currents were inhibited, in a calcium-dependent manner. This inhibition was associated with increased phosphorylation of the β1 subunit of GABAAR, and the inhibition could itself be attenuated by (1) kinase inhibitors (of protein kinase C and CaM kinase II) and (2) the mutation, to alanine, of serine 409 of the β1 subunit, a site previously identified in phosphorylation-dependent regulation in other pathways. These results are the first to directly support the feasibility of postsynaptic crosstalk between Ox-A and GABAAR, indicating a process in which Ox-A could promote phosphorylation of the β1 subunit, reducing the GABA-induced, hyperpolarising current. In this model, Ox-A/GABAAR crosstalk would cause the depolarising influence of Ox-A to be boosted, a type of positive feedback that could, for example, facilitate the ability to abruptly awake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamantidis A, Carter MC, de Lecea L (2010) Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424

    Article  CAS  PubMed  Google Scholar 

  • Belle MD, Hughes AT, Bechtold DA, Cunningham P, Pierucci M, Burdakov D, Piggins HD (2014) Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 34(10):3607–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betschart C, Hintermann S, Behnke D, Cotesta S, Fendt M, Gee CE, Jacobson LH, Laue G, Ofner S, Chaudhari V, Badiger S, Pandit C, Wagner J, Hoyer D (2013) Identification of a novel series of orexin receptor antagonists with a distinct effect on sleep architecture for the treatment of insomnia. J Med Chem 56(19):7590–7607

    Article  CAS  PubMed  Google Scholar 

  • Brunig I, Sommer M, Hatt H, Bormann J (1999) Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A 96(5):2456–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdakov D, Liss B, Ashcroft FM (2003) Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium–calcium exchanger. J Neurosci 23(12):4951–4957

    CAS  PubMed  Google Scholar 

  • Chou WH, Wang D, McMahon T, Qi ZH, Song M, Zhang C, Shokat KM, Messing RO (2010) GABAA receptor trafficking is regulated by protein kinase C(epsilon) and the N-ethylmaleimide-sensitive factor. J Neurosci 30(42):13955–13965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FSI, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Feigenspan A, Bormann J (1994) Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase. Proc Natl Acad Sci U S A 91:10893–10897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoerbelt P, Lindsley TA, Fleck MW (2015) Dopamine directly modulates GABAA receptors. J Neurosci 35(8):3525–3536

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi M, Gumenchuk I, Miyazaki K, Inoue T, Ross WN, Leonard CS (2016) Hypocretin/orexin peptides alter spike encoding by serotonergic dorsal raphe neurons through two distinct mechanisms that increase the late after hyperpolarization. J Neurosci 36(39):10097–10115

    Article  CAS  PubMed  Google Scholar 

  • Krishek BJ, Xie X, Blackstone C, Huganir RL, Moss SJ, Smart TG (1994) Regulation of GABAA receptor function by protein kinase C phosphorylation. Neuron 12(5):1081–1095

    Article  CAS  PubMed  Google Scholar 

  • Kukkonen JP (2013) Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 3(5):C2–C32

    Article  Google Scholar 

  • Kukkonen JP, Leonard CS (2014) Orexin/hypocretin receptor signalling cascades. Br J Pharmacol 171(2):314–331

    Article  CAS  PubMed  Google Scholar 

  • Leonard CS, Ishibashi M (2015) Orexin receptor functions in the ascending arousal system. In: Sakurai T, Pandi-Perumal SR, Monti JM (eds) Orexin and sleep. Springer International Publishing, Switzerland, pp 67–80

    Chapter  Google Scholar 

  • Leonard CS, Kukkonen JP (2014) Orexin/hypocretin receptor signalling: a functional perspective. Br J Pharmacol 171(2):294–313

    Article  CAS  PubMed  Google Scholar 

  • Lin YF, Angelotti TP, Dudek EM, Browning MD, Macdonald RL (1996) Enhancement of recombinant alpha 1 beta 1 gamma 2L gamma-aminobutyric acid A receptor whole-cell currents by protein kinase C is mediated through phosphorylation of both beta 1 and gamma 2L subunits. Mol Pharmacol 50(1):185–195

    CAS  PubMed  Google Scholar 

  • Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22(21):9453–9464

    CAS  PubMed  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807

    Article  CAS  PubMed  Google Scholar 

  • McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • McDonald BJ, Moss SJ (1994) Differential phosphorylation of intracellular domains of gamma-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase. J Biol Chem 269 (27):18111-18117

  • Moss SJ, Smart TG, Blackstone CD, Huganir RL (1992) Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257:661–665

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ (2015) Regulation of GABAARs by phosphorylation. Adv Pharmacol 72:97–146

    Article  PubMed  Google Scholar 

  • Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827(1–2):243–260

    Article  CAS  PubMed  Google Scholar 

  • Newland CF, Cull-Candy SG (1992) On the mechanism of action of picrotoxin on GABA receptor channels in dissociated sympathetic neurones of the rat. J Physiol 447:191–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palus K, Chrobok L, Lewandowski MH (2015) Orexins/hypocretins modulate the activity of NPY-positive and -negative neurons in the rat intergeniculate leaflet via OX1 and OX2 receptors. Neuroscience 300:370–380

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015

    CAS  PubMed  Google Scholar 

  • Poisbeau P, Cheney MC, Browning MD, Mody I (1999) Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J Neurosci 19(2):674–683

    CAS  PubMed  Google Scholar 

  • Sachidanandan D, Bera AK (2015) Inhibition of the GABAA receptor by sulfated neurosteroids: a mechanistic comparison study between pregnenolone sulfate and dehydroepiandrosterone sulfate. J Mol Neurosci 56(4):868–877

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T (2007) Orexins and orexin receptors. In: Nishino S, Sakurai T (eds) The orexin/hypocretin system: physiology and pathophysiology. Humana Press, Totowa, New Jersey, pp 13–23

    Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Pandi-Perumal SR, Monti JM (eds) (2015) Orexin and sleep. Springer International Publishing, Switzerland

    Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scammell TE, Winrow CJ (2011) Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 51:243–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18(12):4705–4721

    CAS  PubMed  Google Scholar 

  • Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2(8):795–816

    Article  CAS  PubMed  Google Scholar 

  • Taleb O, Loeffler JP, Trouslard J, Demeneix BA, Kley N, Hollt V, Feltz P (1986) Ionic conductances related to GABA action on secretory and biosynthetic activity of pars intermedia cells. Brain Res Bull 17(5):725–730

    Article  CAS  PubMed  Google Scholar 

  • Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27(3):469–474

    Article  CAS  PubMed  Google Scholar 

  • Uslaner JM, Renger JJ, Coleman PJ, Winrow CJ (2015) A new class of hypnotic compounds for the treatment of insomnia: the dual orexin receptor antagonists. In: Sakurai T, Pandi-Perumal SR, Monti JM (eds) Orexin and sleep. Springer International Publishing, Switzerland, pp 323–338

    Chapter  Google Scholar 

  • van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18(19):7962–7971

    PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Dr. Takeshi Sakurai and Dr. Neil Harrison for providing the orexin receptor and GABA receptor clones, respectively. We are also grateful to Sucheta Sridhar for her critical comments on the manuscript. D.S. and H.P.R. are thankful to IIT Madras and the Department of Biotechnology, India (DBT), respectively, for the fellowships provided during the course of their PhD studies. The study was supported by the Council of Scientific and Industrial Research (CSIR), India.

Author Contributions

D.S. and A.K.B. conceived the idea, analysed the data, and wrote the manuscript. D.S., H.P.R., and A.M. performed the experiments. G.J.H. analysed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Kanti Bera.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachidanandan, D., Reddy, H.P., Mani, A. et al. The Neuropeptide Orexin-A Inhibits the GABAA Receptor by PKC and Ca2+/CaMKII-Dependent Phosphorylation of Its β1 Subunit. J Mol Neurosci 61, 459–467 (2017). https://doi.org/10.1007/s12031-017-0886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0886-0

Keywords

Navigation