Skip to main content
Log in

RIP1 Inhibition Rescues from LPS-Induced RIP3-Mediated Programmed Cell Death, Distributed Energy Metabolism and Spatial Memory Impairment

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Receptor interacting protein 1 (RIP1) has a critical role in initiation of programmed necrosis or necroptosis. RIP1 in a close collaboration with RIP3 not only mediates necroptosis but also is involved in apoptosis and inflammatory signaling. However, the interpretation of the distinct function of RIP1 and RIP3 is complicated. Herein, we demonstrated that RIP1 inhibition in the context of LPS-induced neuroinflammation decreases RIP3 expression. Concomitant administration of Nec-1, specific inhibitor of RIP1, with LPS also attenuated the activating effect of RIP3 on metabolic enzymes, glutamate-ammonia ligase and glutamate dehydrogenase as bioenergetic determinants, in hippocampal and cortical cells. RIP1 inhibition possessed an anti-inflammatory effect and improved the antioxidant capacity against LPS. Interestingly, and opposed to some reports that necroptosis inhibition sensitizes cells to apoptosis, our results showed that RIP1 inhibition attenuates apoptotic cell death in response to LPS. The survival of neuronal function was also confirmed by measuring spontaneous alternations of rats in Y-maze. In conclusion, effects of RIP1 inhibition on RIP3 and cell death provide new approaches to ameliorate neuroinflammation and relative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cabal-Hierro L, Lazo PS (2012) Signal transduction by tumor necrosis factor receptors. Cell Signal 24:1297–1305. doi:10.1016/j.cellsig.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  • Chang P, Dong W, Zhang M, et al. (2014) Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci 52:242–249. doi:10.1007/s12031-013-0132-3

    Article  CAS  PubMed  Google Scholar 

  • Declercq W, Berghe TV, Vandenabeele P (2009) Minireview RIP kinases at the crossroads of cell death and survival. Cell 8:229–232

    Article  Google Scholar 

  • Degterev A, Huang Z, Boyce M, et al. (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119. doi:10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  • Doherty D (1970) l-glutamate dehydrogenases (yeast). Methods Enzymol 17:850–856

    Article  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Fricker M, Vilalta A, Tolkovsky AM, Brown GC (2013) Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia. J Biol Chem 288:9145–9152. doi:10.1074/jbc.M112.427880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givens B (1995) Low doses of ethanol impair spatial working memory and reduce hippocampal theta activity. Alcohol Clin Exp Res 19:763–767

    Article  CAS  PubMed  Google Scholar 

  • Gong Q, Wanga Q, Pan L, Liu X, Xin H, Zhu Y (2011) S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-jB pathway in rats. Brain Behav Immun 25:110–119

    Article  CAS  PubMed  Google Scholar 

  • Guire C, Beyaert R, Loo G (2011) Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci 34:619–628

    Article  Google Scholar 

  • Han W, Xie J, Li L, Liu Z, Hu X (2009) Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14:674–686. doi:10.1007/s10495-009-0334-x

    Article  CAS  PubMed  Google Scholar 

  • Han W, Xie J, Fang Y, Wang Z, Pan H (2012) Nec-1 enhances shikonin-induced apoptosis in leukemia cells by inhibition of RIP-1 and ERK1/2. Int J Mol Sci 13:7212–7225. doi:10.3390/ijms13067212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Xie G, Miao F, et al. (2014) Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 54:92–102. doi:10.1016/j.pnpbp.2014.03.015

    Article  CAS  Google Scholar 

  • Iwai T, Iinuma Y, Kodani R, Oka J (2008) Neuromedin U inhibits inflammation-mediated memory impairment and neuronal cell-death in rodents. Neurosci Res 61:113–119. doi:10.1016/j.neures.2008.01.018

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WJ, Upton JW, Long AB, et al. (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372. doi:10.1038/nature09857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  • Khan N, Lawlor K E, Murphy J M, Vince JE (2014) More to life than death: molecular determinants of necroptotic and non-necroptotic RIP3 kinase signaling. Curr Opin Immunol 26:76-89.

  • Kikuchi M, Kuroki S, Kayama M, Sakaguchi S, Lee KK, Yonehara S (2012) Protease activity of procaspase-8 is essential for cell survival by inhibiting both apoptotic and nonapoptotic cell death dependent on receptor-interacting protein kinase 1 (RIP1) and RIP3. J Biol Chem 287:41165–41173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Li J (2013) Caspase blockade induces RIP3-mediated programmed necrosis in toll-like receptor-activated microglia. Cell Death Dis 4:e716. doi:10.1038/cddis.2013.238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura R, Devi L, Ohno M (2010) Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic mice. J Neurochem 113:248–261. doi:10.1111/j.1471-4159.2010.06608.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingdon HS, Hubbard JS, Stadtman ER (1968) Regulation of glutamine synthetase. XI The Nature and Implications of a lag Phase in the Escherichia coli Glutamine Synthetase Reaction Biochemistry 7:2136–2142

    CAS  PubMed  Google Scholar 

  • Miwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M (2011) Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J Neuroinflammation 8:153. doi:10.1186/1742-2094-8-153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura M, Takagi N, Takagi K, et al. (2006) Prevention of apoptosis inducing factor translocation is a possible mechanism for protective effects of hepatocyte growth factor against neuronal cell death in the hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metabolism 26:1354–1365

    Article  CAS  Google Scholar 

  • Niranjan R (2013) Molecular basis of etiological implications in Alzheimer’s disease: focus on neuroinflammation. Mol Neurobiol 48:412–428. doi:10.1007/s12035-013-8428-4

    Article  CAS  PubMed  Google Scholar 

  • Northington FJ, Chavez-Valdez R, Graham EM, Razdan S, Gauda EB, Martin LJ (2011) Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI. J Cereb Blood Flow Metab 31:178–189. doi:10.1038/jcbfm.2010.72

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans MI, Liu J, Arslan F, Den Ouden K, Van Middelaar BJ, Doevendans PA, Sluijter JP (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia reperfusion in vivo. Basic Res Cardiol 107:270–278

    Article  PubMed  Google Scholar 

  • Ohno M, Sametsky EA, Younkin LH, et al. (2004) BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41:27–33

    Article  CAS  PubMed  Google Scholar 

  • Omidbakhsh R, Rajabli B, Nasoohi S, et al. (2014) Fingolimod affects gene expression profile associated with LPS-induced memory impairment. Exp Brain Res 232:3687–3696. doi:10.1007/s00221-014-4052-4

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier Academic press, Amsterdam

    Google Scholar 

  • Qinli Z, Meiqing L, Xia J, et al. (2013) Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure. Restor Neurol Neurosci 31:543–555. doi:10.3233/RNN-120304

    PubMed  Google Scholar 

  • Richman CL, Dember WN, Kim P (1987) Spontaneous alternation behavior: a review. Curr Psychol 5:385–391

    Google Scholar 

  • Rosenbaum DM, Degterev A, David J, et al. (2010) Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 88:1569–1576. doi:10.1002/jnr.22314

    CAS  PubMed  Google Scholar 

  • Takahashi N, Duprez L, Grootjans S, et al. (2012) Necrostatin-1 analogues : critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437–e410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tricarico PM, Marcuzzi A, Piscianz E, Monasta L, Crovella S, Kleiner G (2013) Mevalonate kinase deficiency and neuroinflammation: balance between apoptosis and pyroptosis. Int J Mol Sci 14:23274–23288

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714. doi:10.1038/nrm2970

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang H, Tao Y, Zhang S, Wang J, Feng X (2014) Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 266:91–101. doi:10.1016/j.neuroscience.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346. doi:10.1101/cshperspect.a006346

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, Chua B (2007) Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103:2004–2014

    Article  CAS  PubMed  Google Scholar 

  • You Z, Savitz SI, Yang J, et al. (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:1564–1573. doi:10.1038/jcbfm.2008.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DW, Shao J, Lin J, et al. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336. doi:10.1126/science.1172308

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Dai W, Lin C, et al. (2013) Protective effects of necrostatin-1 against concanavalin A-induced acute hepatic injury in mice. Mediat Inflamm 2013:706156. doi:10.1155/2013/706156

    Google Scholar 

Download references

Acknowledgments

This work was carried out as part of a PhD project and financially supported by the Neuroscience Research Center, Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Dargahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikseresht, S., Khodagholi, F., Nategh, M. et al. RIP1 Inhibition Rescues from LPS-Induced RIP3-Mediated Programmed Cell Death, Distributed Energy Metabolism and Spatial Memory Impairment. J Mol Neurosci 57, 219–230 (2015). https://doi.org/10.1007/s12031-015-0609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0609-3

Keywords

Navigation