Skip to main content

Advertisement

Log in

Roles of Serine/Threonine Phosphatases in Low-Dose Endothelial Monocyte-Activating Polypeptide-II-Induced Opening of Blood–Tumor Barrier

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) induces blood–tumor barrier (BTB) opening via RhoA/Rho kinase/PKC-α/β signaling pathway. In a recent study, we revealed that low-dose EMAP-II induced significant increases in expression levels of serine/threonine (Ser/Thr) phosphatase (PP)1 and 2A in rat brain microvascular endothelial cells (RBMECs) of BTB model. In addition, PKC-ζ/PP2A signaling pathway is involved in EMAP-II-induced BTB hyperpermeability. The present study further investigated the exact roles of PPs in this process. In an in vitro BTB model, low-dose EMAP-II (0.05 nM) induced a significant increase in PP1 activity in RBMECs. There was an interaction between PKC-α/β and PP1 in RBMECs. Inhibition of PKC-α/β activity with GÖ6976 completely blocked EMAP-II-induced activation of PP1. Conversely, inhibition of PP1 activity with tautomycin had no effect on EMAP-II-induced PKC-α/β activation. Like GÖ6976, tautomycin significantly prevented EMAP-II-induced BTB hyperpermeability and MLC phosphorylation in RBMECs. Also, in this study, EMAP-II induced a marked redistribution of occludin and a significant dephosphorylation of occludin on Ser/Thr residues in RBMECs. Similar with GÖ6976 pretreatment, tautomycin pretreatment dramatically diminished EMAP-II-induced redistribution of occludin. Furthermore, pretreatment with tautomycin significantly inhibited EMAP-II-induced dephosphorylation of occludin on Ser residues. However, pretreatment with okadaic acid (an inhibitor of PP2A) significantly prevented changes in Ser-phosphorylated occludin induced by EMAP-II treatment. Collectively, this study demonstrates that low-dose EMAP-II increases BTB permeability via a RhoA/Rho kinase/PKC-α/β/PP1 signaling pathway and that PP1/PP2A-mediated Ser/Thr dephosphorylation of occludin plays an important role in EMAP-II-induced BTB hyperpermeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreeva AY, Krause E, Müller EC (2001) Protein kinase C regulates the phosphorylation and cellular localization of occludin. J Biol Chem 276(42):38480–38486

    Article  CAS  PubMed  Google Scholar 

  • Aslam M, Härtel FV, Arshad M, et al (2010) cAMP/PKA antagonizes thrombin-induced inactivation of endothelial myosin light chain phosphatase: role of CPI-17. Cardiovasc Res 87(2):375–384

    Article  CAS  PubMed  Google Scholar 

  • Awasthi N, Zhang C, Ruan W, et al (2012) Evaluation of poly-mechanistic antiangiogenic combinations to enhance cytotoxic therapy response in pancreatic cancer. PLoS One 7(6):e38477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bazzoni G, Martinez-Estrada OM, Orsenigo F, et al (2000) Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 275(27):20520–20526

    Article  CAS  PubMed  Google Scholar 

  • Black KL, Ningaraj NS (2004) Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 11(3):165–173

    PubMed  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270

    Article  CAS  PubMed  Google Scholar 

  • Diwan AH, Honkanen RE, Schaeffer Jr RC, et al (1997) Inhibition of serine/threonine protein phosphatases decreases barrier function of rat pulmonary microvascular endothelial cells. J Cell Physiol 171(3):259–270

    Article  CAS  PubMed  Google Scholar 

  • Fuller E, Duckham C, Wood E (2007) Disruption of epithelial tight junctions by yeast enhances the paracellular delivery of a model protein. Pharm Res 24(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Garcia C, Aranda J, Arnold E, et al (2008) Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation. J Clin Invest 118(6):2291–2300

    PubMed Central  CAS  PubMed  Google Scholar 

  • González-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778(3):729–756

    Article  PubMed  Google Scholar 

  • Gu YT, Xue YX, Wang YF, et al (2012) Role of ROS/RhoA/PI3K/PKB signaling in NS1619-mediated blood-tumor barrier permeability increase. J Mol Neurosci 48(1):302–312

    Article  CAS  PubMed  Google Scholar 

  • Han M, Pendem S, Teh SL, et al (2010) Ascorbate protects endothelial barrier function during septic insult: role of protein phosphatase type 2A. Free Radic Biol Med 48(1):128–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Härtel FV, Rodewald CW, Aslam M, et al (2007) Extracellular ATP induces assembly and activation of the myosin light chain phosphatase complex in endothelial cells. Cardiovasc Res 74(3):487–496

    Article  PubMed  Google Scholar 

  • Idbaih A, Ducray F, Sierra Del Rio M, et al (2008) Therapeutic application of noncytotoxic molecular targeted therapy in gliomas: growth factor receptors and angiogenesis inhibitors. Oncologist 13(9):978–992

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AI, McCall IC, Parkos CA, et al (2004) Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell 15(6):2639–2651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi AD, Dimitropoulou C, Thangjam G, et al (2014) Heat shock protein 90 inhibitors prevent LPS-induced endothelial barrier dysfunction by disrupting RhoA signaling. Am J Respir Cell Mol Biol 50(1):170–179

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Liu YH, Xue YX, et al (2012) Signal mechanisms underlying low-dose endothelial monocyte-activating polypeptide-II-induced opening of the blood–tumor barrier. J Mol Neurosci 48(1):291–301

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu YH, Xue YX, et al (2014) Low-dose endothelial monocyte-activating polypeptide-II increases permeability of blood-tumor barrier by caveolae- mediated transcellular pathway. J Mol Neurosci 52(3):313–322

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu YH, Liu XB, et al (2015) Low-dose endothelial monocyte-activating polypeptide-II increases permeability of blood–tumor barrier via a PKC-ζ/PP2A-dependent mechanism. Exp Cell Res 331(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Lum H, Podolski JL, Gurnack ME, et al (2001) Protein phosphatase 2B inhibitor potentiates endothelial PKC activity and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 281(3):L546–L555

    CAS  PubMed  Google Scholar 

  • Ma T, Xue YX (2010) RhoA-mediated potential regulation of blood-tumor barrier permeability by bradykinin. J Mol Neurosci 42(1):67–73

    Article  PubMed  Google Scholar 

  • Madara JL (1998) Regulation of the movement of solutes across tight junctions. Annu Rev Physiol 60:143–159

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi J, Takai Y (2005) Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 57(6):815–855

    Article  CAS  PubMed  Google Scholar 

  • Nunbhakdi-Craig V, Machleidt T, Ogris E, et al (2002) Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 158(5):967–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rapôso C, Odorissi PAM, Oliveira AL, et al (2012) Effect of phoneutria nigriventer venom on the expression of junctional protein and P-gp efflux pump function in the blood–brain barrier. Neurochem Res 37(9):1967–1981

    Article  PubMed  Google Scholar 

  • Reznikov AG, Chaykovskaya LV, Polyakova LI, et al (2011) Cooperative antitumor effect of endothelial-monocyte activating polypeptide II and flutamide on human prostate cancer xenografts. Exp Oncol 33(4):231–234

    CAS  PubMed  Google Scholar 

  • Sakakibara A, Furuse M, Saitou M (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137(6):1393–1401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seth A, Sheth P, Elias BC, et al (2007) Protein phosphatases 2A and 1 interact with occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer. J Biol Chem 282(15):11487–11498

    Article  CAS  PubMed  Google Scholar 

  • Sheth P, Samak G, Shull JA, et al (2009) Protein phosphatase 2A plays a role in hydrogen peroxide-induced disruption of tight junctions in caco-2 cell monolayers. Biochem J 421(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Simonovic I, Rosenberg J, Koutsouris A, et al (2000) Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol 2(4):305–315

    Article  CAS  PubMed  Google Scholar 

  • Turner JR (2000) ‘Putting the squeeze’ on the tight junction: understanding cytoskeletal regulation. Semin Cell Dev Biol 11(4):301–308

    Article  CAS  PubMed  Google Scholar 

  • Verin AD, Cooke C, Herenyiova M, et al (1998) Role of Ca2+/calmodulin-dependent phosphatases 2B in thrombin-induced endothelial cell contractile responses. Am J Physiol Lung Cell Mol Physiol 275(4):L788–L799

    CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc Pharmacol 38(6):323–337

    Article  CAS  Google Scholar 

  • Wong V (1997) Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am J Phys 273(6):C1859–C1867

    CAS  Google Scholar 

  • Xie H, Xue YX, Liu LB, et al (2010) Endothelial-monocyte-activating polypeptide II increases blood-tumor barrier permeability by down-regulating the expression of tight junction associated proteins. Brain Res 1139:13–20

    Article  Google Scholar 

  • Xie H, Xue YX, Liu LB, et al (2012) Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood-tumor barrier. J Mol Neurosci 46(3):666–676

    Article  CAS  PubMed  Google Scholar 

  • Yuan SY (2002) Protein kinase signaling in the modulation of microvascular permeability. Vasc Pharmacol 39(4–5):213–223

    Article  CAS  Google Scholar 

  • Zhou G, Kamenos G, Pendem S, et al (2012) Ascorbate protects against vascular leakage in cecal ligation and puncture-induced septic peritonitis. Am J Physiol Regul Integr Comp Physiol 302(4):R409–R416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Natural Science Foundation of China (Nos. 81372484, 81372682, 81172197, 81171131, 81272564, and 81272795), the Natural Science Foundation of Liaoning Province in China (No. 201102300), Liaoning Science and Technology Plan Projects (No. 2011225020), Shenyang Science and Technology Plan Projects (Nos. F11-264-1-15, F12-277-1-05, F13-318-1-16, F13-318-1-19 and F13-220-9-15), and Outstanding Scientific Fund of Shengjing Hospital (No. 201304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-hui Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, Xb., Liu, Yh. et al. Roles of Serine/Threonine Phosphatases in Low-Dose Endothelial Monocyte-Activating Polypeptide-II-Induced Opening of Blood–Tumor Barrier. J Mol Neurosci 57, 11–20 (2015). https://doi.org/10.1007/s12031-015-0604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0604-8

Keywords

Navigation