Skip to main content
Log in

Interaction Between Brain Histamine and Serotonin, Norepinephrine, and Dopamine Systems: In Vivo Microdialysis and Electrophysiology Study

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Brain monoamines (serotonin, norepinephrine, dopamine, and histamine) play an important role in emotions, cognition, and pathophysiology and treatment of mental disorders. The interactions between serotonin, norepinephrine, and dopamine were studied in numerous works; however, histamine system received less attention. The aim of this study was to investigate the interactions between histamine and other monoamines, using in vivo microdialysis and electrophysiology. It was found that the inverse agonist of histamine-3 receptors, thioperamide, increased the firing activity of dopamine neurons in the ventral tegmental area. Selective agonist of histamine-3 receptors, immepip, reversed thiperamide-induced stimulation of firing activity of dopamine neurons. The firing rates of serotonin and norpeinephrine neurons were not attenuated by immepip or thioperamide. Thioperamide robustly and significantly increased extracellular concentrations of serotonin, norepinephrine, and dopamine in the rat prefrontal cortex and slightly increased norepinephrine and dopamine levels in the tuberomammillary nucleus of the hypothalamus. It can be concluded that histamine stimulates serotonin, norepinephrine, and dopamine transmission in the brain. Modulation of firing of dopamine neurons is a key element in functional interactions between histamine and other monoamines. Antagonists of histamine-3 receptors, because of their potential ability to stimulate monoamine neurotransmission, might be beneficial in the treatment of mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi N, Terao K, Otsuka R, Arai T (2002) Histaminergic H(2) blockade facilitates ischemic release of dopamine in gerbil striatum. Brain Res 926:172–175

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian GK, Bunney BS (1977) Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn Schmiedebergs Arch Pharmacol 297:1–7

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen MS, Panula P (1988) The histaminergic system in the guinea pig central nervous system: an immunocytochemical mapping study using an antiserum against histamine. J Comp Neurol 273:163–186

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen MS, Flugge G, Fuchs E, Panula P (1989) Histaminergic system in the tree shrew brain. J Comp Neurol 286:289–310

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen AJ, Jablonowski JA, van der Mey M, Barbier AJ, Klok RP, Verbeek J, Schuit R, Herscheid JD, Leysen JE, Carruthers NI, Lammertsma AA, Windhorst AD (2006) Radiosynthesis and biodistribution of a histamine H3 receptor antagonist 4-[3-(4-piperidin-1-yl-but-1-ynyl)-[11C]benzyl]-morpholine: evaluation of a potential PET ligand. Nucl Med Biol 33:801–810

    Article  CAS  PubMed  Google Scholar 

  • Allers KA, Dremencov E, Ceci A, Flik G, Ferger B, Cremers TI, Ittrich C, Sommer B (2010) Acute and repeated flibanserin administration in female rats modulates monoamines differentially across brain areas: a microdialysis study. J Sex Med 7:1757–1767

    Article  CAS  PubMed  Google Scholar 

  • Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302:832–837

    Article  CAS  PubMed  Google Scholar 

  • Bakker RA, Timmerman H, Leurs R (2002) Histamine receptors: specific ligands, receptor biochemistry, and signal transduction. Clin Allergy Immunol 17:27–64

    CAS  PubMed  Google Scholar 

  • Brioni JD, Esbenshade TA, Garrison TR, Bitner SR, Cowart MD (2011) Discovery of histamine H3 antagonists for the treatment of cognitive disorders and alzheimer’s disease. J Pharmacol Exp Ther 336:38–46

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    Article  CAS  PubMed  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571

    CAS  PubMed  Google Scholar 

  • Connelly WM, Shenton FC, Lethbridge N, Leurs R, Waldvogel HJ, Faull RL, Lees G, Chazot PL (2009) The histamine H4 receptor is functionally expressed on neurons in the mammalian CNS. Br J Pharmacol 157:55–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Carlo G, Ghi P, Orsetti M (2000) Effect of R-(-)-alpha-methylhistamine and thioperamide on in vivo release of norepinephrine in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 24:275–284

    Article  PubMed  Google Scholar 

  • Dremencov E, Gispan-Herman I, Rosenstein M, Mendelman A, Overstreet DH, Zohar J, Yadid G (2004) The serotonin-dopamine interaction is critical for fast- onset action of antidepressant treatment: in vivo studies in an animal model of depression. Prog Neuropsychopharmacol Biol Psychiatry 28:141–147

    Article  CAS  PubMed  Google Scholar 

  • Dremencov E, El Mansari M, Blier P (2007a) Distinct electrophysiological effect of paliperidone and risperidone on the firing activity of rat serotonin and norepinephrine neurons. Psychopharmacology (Berl) 194:63–72

    Article  CAS  Google Scholar 

  • Dremencov E, El Mansari M, Blier P (2007b) Noradrenergic augmentation of escitalopram response by risperidone: electrophysiologic studies in the rat brain. Biol Psychiatry 61:671–678

    Article  CAS  PubMed  Google Scholar 

  • Dremencov E, El Mansari M, Blier P (2009) Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area. J Psychiatry Neurosci 34:223–229

    PubMed Central  PubMed  Google Scholar 

  • Dringenberg HC, De Souza-Silva MA, Rossmuller J, Huston JP, Schwarting RK (1998a) Histamine H1 receptor antagonists produce increases in extracellular acetylcholine in rat frontal cortex and hippocampus. J Neurochem 70:1750–1758

    Article  CAS  PubMed  Google Scholar 

  • Dringenberg HC, de Souza-Silva MA, Schwarting RK, Huston JP (1998b) Increased levels of extracellular dopamine in neostriatum and nucleus accumbens after histamine H1 receptor blockade. Naunyn Schmiedebergs Arch Pharmacol 358:423–429

    Article  CAS  PubMed  Google Scholar 

  • El Mansari M, Guiard BP, Chernoloz O, Ghanbari R, Katz N, Blier P (2010) Relevance of norepinephrine-dopamine interactions in the treatment of major depressive disorder. CNS Neurosci Ther 16:e1–e17

    Article  PubMed Central  PubMed  Google Scholar 

  • Flik G, Dremencov E, Cremers TI, Folgering JH, Westerink BH (2011) The role of cortical and hypothalamic histamine-3 receptors in the modulation of centralhistamine neurotransmission: an in vivo electrophysiology and microdialysis study. Eur J Neurosci 34:1747–1755

    Article  PubMed  Google Scholar 

  • Fox GB, Esbenshade TA, Pan JB, Radek RJ, Krueger KM, Yao BB, Browman KE, Buckley MJ, Ballard ME, Komater VA, Miner H, Zhang M, Faghih R, Rueter LE, Bitner RS, Drescher KU, Wetter J, Marsh K, Lemaire M, Porsolt RD, Bennani YL, Sullivan JP, Cowart MD, Decker MW, Hancock AA (2005) Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile]: II. neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther 313:176–190

    Article  CAS  PubMed  Google Scholar 

  • Giannoni P, Passani MB, Nosi D, Chazot PL, Shenton FC, Medhurst AD, Munari L, Blandina P (2009) Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur J Neurosci 29:2363–2374

    Article  PubMed  Google Scholar 

  • Giannoni P, Medhurst AD, Passani MB, Giovannini MG, Ballini C, Corte LD, Blandina P (2010) Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J Pharmacol Exp Ther 332:164–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guiard BP, El Mansari M, Merali Z, Blier P (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 11:625–639

    CAS  PubMed  Google Scholar 

  • Haas HL, Wolf P, Palacios JM, Garbarg M, Barbin G, Schwartz JC (1978) Hypersensitivity to histamine in the guinea-pig brain: microiontophoretic and biochemical studies. Brain Res 156:275–291

    Article  CAS  PubMed  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241

    Article  CAS  PubMed  Google Scholar 

  • Hew RW, Hodgkinson CR, Hill SJ (1990) Characterization of histamine H3-receptors in guinea-pig ileum with H3-selective ligands. Br J Pharmacol 101:621–624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwase M, Homma I, Shioda S, Nakai Y (1993) Histamine immunoreactive neurons in the brain stem of the rabbit. Brain Res Bull 32:267–272

    Article  CAS  PubMed  Google Scholar 

  • Korotkova TM, Haas HL, Brown RE (2002) Histamine excites GABAergic cells in the rat substantia nigra and ventral tegmental area in vitro. Neurosci Lett 320:133–136

    Article  CAS  PubMed  Google Scholar 

  • Lapa GB, Mathews TA, Harp J, Budygin EA, Jones SR (2005) Diphenylpyraline, a histamine H1 receptor antagonist, has psychostimulant properties. Eur J Pharmacol 506:237–240

    Article  CAS  PubMed  Google Scholar 

  • Leurs R, Blandina P, Tedford C, Timmerman H (1998) Therapeutic potential of histamine H3 receptor agonists and antagonists. Trends Pharmacol Sci 19:177–183

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16:1523–1537

    CAS  PubMed  Google Scholar 

  • Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM (1990) Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res 526:322–327

    Article  CAS  PubMed  Google Scholar 

  • Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, Cilia J, Cluderay JE, Crook B, Davis JB, Davis RK, Davis RP, Dawson LA, Foley AG, Gartlon J, Gonzalez MI, Heslop T, Hirst WD, Jennings C, Jones DN, Lacroix LP, Martyn A, Ociepka S, Ray A, Regan CM, Roberts JC, Schogger J, Southam E, Stean TO, Trail BK, Upton N, Wadsworth G, Wald JA, White T, Witherington J, Woolley ML, Worby A, Wilson DM (2007) GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther 321:1032–1045

    Article  CAS  PubMed  Google Scholar 

  • Miyata S, Hirano S, Ohsawa M, Kamei J (2011) Chlorpheniramine exerts anxiolytic-like effects and activates prefrontal 5-HT systems in mice. Psychopharmacology (Berl) 213:441–452

    Article  CAS  Google Scholar 

  • Mochizuki T, Jansen FP, Leurs R, Windhorst AD, Yamatodani A, Maeyama K, Timmerman H (1996) Brain penetration of the histamine H3 receptor antagonists thioperamide and clobenpropit in rat and mouse, determined with ex vivo [125I]iodophenpropit binding. Brain Res 743:178–183

    Article  CAS  PubMed  Google Scholar 

  • Munzar P, Tanda G, Justinova Z, Goldberg SR (2004) Histamine H3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacology 29:705–717

    Article  CAS  PubMed  Google Scholar 

  • Nowak P, Bortel A, Dabrowska J, Biedka I, Slomian G, Roczniak W, Kostrzewa RM, Brus R (2008) Histamine H(3) receptor ligands modulate l-dopa-evoked behavioral responses and l-dopa derived extracellular dopamine in dopamine-denervated rat striatum. Neurotox Res 13:231–240

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Nuutinen S (2013) The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 14:472–487

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28:585–610

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier, Amsterdam

    Google Scholar 

  • Pollard H, Moreau J, Arrang JM, Schwartz JC (1993) A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 52:169–189

    Article  CAS  PubMed  Google Scholar 

  • Schlicker E, Kathmann M, Detzner M, Exner HJ, Gothert M (1994a) H3 receptor- mediated inhibition of noradrenaline release: an investigation into the involvement of Ca2+ and K+ ions, G protein and adenylate cyclase. Naunyn Schmiedebergs Arch Pharmacol 350:34–41

    Article  CAS  PubMed  Google Scholar 

  • Schlicker E, Malinowska B, Kathmann M, Gothert M (1994b) Modulation of neurotransmitter release via histamine H3 heteroreceptors. Fundam Clin Pharmacol 8:128–137

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva OA, Andreeva N, Garret M, Scherer A, Haas HL (2005) Pharmacological properties of GABAA receptors in rat hypothalamic neurons expressing the epsilon-subunit. J Neurosci 25:88–95

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Mor M, Bordi F, Rivara S, Caretta A, Ballabeni V, Barocelli E, Plazzi PV (1997) Plasma concentration and brain penetration of the H3-receptor antagonist thioperamide in rats. Farmaco 52:457–462

    CAS  PubMed  Google Scholar 

  • Vacondio F, Mor M, Silva C, Zuliani V, Rivara M, Rivara S, Bordi F, Plazzi PV, Magnanini F, Bertoni S, Ballabeni V, Barocelli E, Carrupt PA, Testa B (2004) Imidazole H3-antagonists: relationship between structure and ex vivo binding to rat brain H3-receptors. Eur J Pharm Sci 23:89–98

    Article  CAS  PubMed  Google Scholar 

  • Vanhala A, Yamatodani A, Panula P (1994) Distribution of histamine-, 5-hydroxytryptamine-, and tyrosine hydroxylase-immunoreactive neurons and nerve fibers in developing rat brain. J Comp Neurol 347:101–114

    Article  CAS  PubMed  Google Scholar 

  • Vollinga RC, de Koning JP, Jansen FP, Leurs R, Menge WM, Timmerman H (1994) A new potent and selective histamine H3 receptor agonist, 4-(1H-imidazol-4-ylmethyl)piperidine. J Med Chem 37:332–333

    Article  CAS  PubMed  Google Scholar 

  • Wade L, Bielory L, Rudner S (2012) Ophthalmic antihistamines and H1–H4 receptors. Curr Opin Allergy Clin Immunol 12:510–516

    Article  CAS  PubMed  Google Scholar 

  • Westerink BHC, Cremers TIFH (2007) Handbook of microdialysis. 16:697

  • Yamamoto Y, Mochizuki T, Okakura-Mochizuki K, Uno A, Yamatodani A (1997) Thioperamide, a histamine H3 receptor antagonist, increases GABA release from the rat hypothalamus. Methods Find Exp Clin Pharmacol 19:289–298

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms K Jansen, Mr H Kooijker, and Ms S Postma for technical assistance and Dr L Lacinova for critical proof-reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben H. C. Westerink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flik, G., Folgering, J.H.A., Cremers, T.I.H.F. et al. Interaction Between Brain Histamine and Serotonin, Norepinephrine, and Dopamine Systems: In Vivo Microdialysis and Electrophysiology Study. J Mol Neurosci 56, 320–328 (2015). https://doi.org/10.1007/s12031-015-0536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0536-3

Keywords

Navigation