Skip to main content

Advertisement

Log in

Transcriptional Regulatory Events Initiated by Ascl1 and Neurog2 During Neuronal Differentiation of P19 Embryonic Carcinoma Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

As members of the proneural basic-helix-loop-helix (bHLH) family of transcription factors, Ascl1 and Neurog2 direct the differentiation of specific populations of neurons at various times and locations within the developing nervous system. In order to characterize the mechanisms employed by these two bHLH factors, we generated stable, doxycycline-inducible lines of P19 embryonic carcinoma cells that express comparable levels of Ascl1 and Neurog2. Upon induction, both Ascl1 and Neurog2 directed morphological and immunocytochemical changes consistent with initiation of neuronal differentiation. Comparison of Ascl1- and Neurog2-regulated genes by microarray analyses showed both shared and distinct transcriptional changes for each bHLH protein. In both Ascl1- and Neurog2-differentiating cells, repression of Oct4 mRNA levels was accompanied by increased Oct4 promoter methylation. However, DNA demethylation was not detected for genes induced by either bHLH protein. Neurog2-induced genes included glutamatergic marker genes while Ascl1-induced genes included GABAergic marker genes. The Neurog2-specific induction of a gene encoding a protein phosphatase inhibitor, Ppp1r14a, was dependent on distinct, canonical E-box sequences within the Ppp1r14a promoter and the nucleotide sequences within these E-boxes were partially responsible for Neurog2-specific regulation. Our results illustrate multiple novel mechanisms by which Ascl1 and Neurog2 regulate gene repression during neuronal differentiation in P19 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

bHLH:

Basic helix-loop-helix

CamKII:

Ca2+/calmodulin-dependent protein kinase

CNS:

Central nervous system

Dner:

Delta/Notch-like EGF-related receptor

Dnmts:

DNA methyltransferases

Dox:

Doxycycline

EC:

Embryonic carcinoma

EGFP:

Enhanced green fluorescent protein

ERas:

ES cell-expressed Ras

ES:

Embryonic stem

Gadd45γ:

Growth arrest and DNA damage-inducible gamma

ILK:

Integrin-linked kinase

IRES:

Internal ribosome entry site

MAPK:

Mitogen-activated protein kinase

PAK:

p21-activated protein kinase

PKA:

cAMP-dependent protein kinase

PKC:

Protein kinase C

PKN:

Protein kinase N

PP1:

Protein phosphatase 1

qRT-PCR:

Quantitative real-time PCR

ROCK:

Rho-associated coiled-coil kinase

rtTA:

Reverse transcriptional activator protein

References

  • Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA (2001) Interaction of CR6 (GADD45gamma) with proliferating cell nuclear antigen impedes negative growth control. J Biol Chem 276(4):2766–2774

    Article  CAS  PubMed  Google Scholar 

  • Azmi S, Sun H, Ozog A, Taneja R (2003) mSharp-1/DEC2, a basic helix-loop-helix protein functions as a transcriptional repressor of E box activity and Stra13 expression. J Biol Chem 278(22):20098–20109

    Article  CAS  PubMed  Google Scholar 

  • Bain G, Ray WJ, Yao M, Gottlieb DI (1994) From embryonal carcinoma cells to neurons: the P19 pathway. Bioessays 16(5):343–348

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3(7):517–530

    Article  CAS  PubMed  Google Scholar 

  • Breslin MB, Zhu M, Lan MS (2003) NeuroD1/E47 regulates the E-box element of a novel zinc finger transcription factor, IA-1, in developing nervous system. J Biol Chem 278(40):38991–38997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4(3):235–240

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski JA, Kim EJ, Johnson JE, Reh TA (2011) Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 138(16):3519–3531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, Critchley JA, Nguyen L, Gossler A, Gottgens B et al (2006) Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev Cell 11(6):831–844

    Article  CAS  PubMed  Google Scholar 

  • Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C et al (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25(9):930–945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cau E, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129(8):1871–1880

    CAS  PubMed  Google Scholar 

  • Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450(7173):1230–1234

    Article  CAS  PubMed  Google Scholar 

  • Dalgard CL, Zhou Q, Lundell TG, Doughty ML (2011) Altered gene expression in the emerging cerebellar primordium of Neurog1−/− mice. Brain Res 1388:12–21

    Article  CAS  PubMed  Google Scholar 

  • Dalton GD, Dewey WL (2006) Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 40(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker PR (2005) Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem 280(8):6257–6260

    Article  CAS  PubMed  Google Scholar 

  • Deng JT, Sutherland C, Brautigan DL, Eto M, Walsh MP (2002) Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem J 367(Pt 2):517–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinforma 10:48

    Article  Google Scholar 

  • Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M (2005) DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci 8(7):873–880

    Article  CAS  PubMed  Google Scholar 

  • Eto M (2009) Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem 284(51):35273–35277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eto M, Wong L, Yazawa M, Brautigan DL (2000) Inhibition of myosin/moesin phosphatase by expression of the phosphoinhibitor protein CPI-17 alters microfilament organization and retards cell spreading. Cell Motil Cytoskeleton 46(3):222–234

    Article  CAS  PubMed  Google Scholar 

  • Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127(4):693–702

    CAS  PubMed  Google Scholar 

  • Flames N, Hobert O (2009) Gene regulatory logic of dopamine neuron differentiation. Nature 458(7240):885–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F (2000) A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev 14(1):67–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francius C, Clotman F (2010) Dynamic expression of the one cut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neuroscience 165(1):116–129

    Article  CAS  PubMed  Google Scholar 

  • Galichet C, Guillemot F, Parras CM (2008) Neurogenin 2 has an essential role in development of the dentate gyrus. Development 135(11):2031–2041

    Article  CAS  PubMed  Google Scholar 

  • Gidekel S, Bergman Y (2002) A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J Biol Chem 277(37):34521–34530

    Article  CAS  PubMed  Google Scholar 

  • Gohlke JM, Armant O, Parham FM, Smith MV, Zimmer C, Castro DS, Nguyen L, Parker JS, Gradwohl G, Portier CJ et al (2008) Characterization of the proneural gene regulatory network during mouse telencephalon development. BMC Biol 6:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Gu P, Xu X, Le Menuet D, Chung AC, Cooney AJ (2011) Differential recruitment of methyl CpG-binding domain factors and DNA methyltransferases by the orphan receptor germ cell nuclear factor initiates the repression and silencing of Oct4. Stem Cells 29(7):1041–1051

    Article  PubMed Central  PubMed  Google Scholar 

  • Guillemot F (2007) Spatial and temporal specification of neural fates by transcription factor codes. Development 134(21):3771–3780

    Article  CAS  PubMed  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75(3):463–476

    Article  CAS  PubMed  Google Scholar 

  • Han DW, Do JT, Arauzo-Bravo MJ, Lee SH, Meissner A, Lee HT, Jaenisch R, Scholer HR (2009) Epigenetic hierarchy governing Nestin expression. Stem Cells 27(5):1088–1097

    Article  CAS  PubMed  Google Scholar 

  • Hand R, Polleux F (2011) Neurogenin2 regulates the initial axon guidance of cortical pyramidal neurons projecting medially to the corpus callosum. Neural Dev 6:30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hand R, Bortone D, Mattar P, Nguyen L, Heng JI, Guerrier S, Boutt E, Peters E, Barnes AP, Parras C et al (2005) Phosphorylation of neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48(1):45–62

    Article  CAS  PubMed  Google Scholar 

  • Hatada I, Morita S, Kimura M, Horii T, Yamashita R, Nakai K (2008) Genome-wide demethylation during neural differentiation of P19 embryonal carcinoma cells. J Hum Genet 53(2):185–191

    Article  CAS  PubMed  Google Scholar 

  • Henke RM, Meredith DM, Borromeo MD, Savage TK, Johnson JE (2009) Ascl1 and Neurog2 form novel complexes and regulate delta-like3 (Dll3) expression in the neural tube. Dev Biol 328(2):529–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirabayashi Y, Gotoh Y (2010) Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 11(6):377–388

    Article  CAS  PubMed  Google Scholar 

  • Huang HS, Kubish GM, Redmond TM, Turner DL, Thompson RC, Murphy GG, Uhler MD (2010) Direct transcriptional induction of Gadd45gamma by Ascl1 during neuronal differentiation. Mol Cell Neurosci 44(3):282–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang HS, Turner DL, Thompson RC, Uhler MD (2012) Ascl1-induced neuronal differentiation of P19 cells requires expression of a specific inhibitor protein of cyclic AMP-dependent protein kinase. J Neurochem 120(5):667–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jang SK, Pestova TV, Hellen CU, Witherell GW, Wimmer E (1990) Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44(1–4):292–309

    CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R (2005) Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306(2):343–348

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann LT, Niehrs C (2011) Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus. Mech Dev 128(7–10):401–411

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann LT, Gierl MS, Niehrs C (2011) Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. Gene Expr Patterns 11(8):465–470

    Article  CAS  PubMed  Google Scholar 

  • Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA (1995) Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 11(9):1675–1683

    CAS  PubMed  Google Scholar 

  • Kellner S, Kikyo N (2010) Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histol Histopathol 25(3):405–412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, Nakano T (2000) Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 475(3):197–200

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee B, Joshi K, Pfaff SL, Lee JW, Lee SK (2008) A regulatory network to segregate the identity of neuronal subtypes. Dev Cell 14(6):877–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MY, Lee SH, Park JH, Han HJ (2009) Interaction of galectin-1 with caveolae induces mouse embryonic stem cell proliferation through the Src, ERas, Akt and mTOR signaling pathways. Cell Mol Life Sci 66(8):1467–1478

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Pu MT, Hirasawa R, Li BZ, Huang YN, Zeng R, Jing NH, Chen T, Li E, Sasaki H et al (2007) Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 27(24):8748–8759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang X, Song MR, Xu Z, Lanuza GM, Liu Y, Zhuang T, Chen Y, Pfaff SL, Evans SM, Sun Y (2011) Isl1 is required for multiple aspects of motor neuron development. Mol Cell Neurosci 47(3):215–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu ML, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM, Zhang CL (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4:2183

    PubMed  Google Scholar 

  • Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401(6754):670–677

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Fode C, Guillemot F, Anderson DJ (1999) Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 13(13):1717–1728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma YC, Song MR, Park JP, Henry Ho HY, Hu L, Kurtev MV, Zieg J, Ma Q, Pfaff SL, Greenberg ME (2008) Regulation of motor neuron specification by phosphorylation of neurogenin 2. Neuron 58(1):65–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma DK, Guo JU, Ming GL, Song H (2009) DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8(10):1526–1531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McBurney MW (1993) P19 embryonal carcinoma cells. Int J Dev Biol 37(1):135–140

    CAS  PubMed  Google Scholar 

  • McBurney MW, Rogers BJ (1982) Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev Biol 89(2):503–508

    Article  CAS  PubMed  Google Scholar 

  • Mellor J, Dudek P, Clynes D (2008) A glimpse into the epigenetic landscape of gene regulation. Curr Opin Genet Dev 18(2):116–122

    Article  CAS  PubMed  Google Scholar 

  • Messmer K, Shen WB, Remington M, Fishman PS (2012) Induction of neural differentiation by the transcription factor NeuroD2. Int J Dev Neurosci 30(2):105–112

    Article  CAS  PubMed  Google Scholar 

  • Nam HS, Benezra R (2009) High levels of Id1 expression define B1 type adult neural stem cells. Cell Stem Cell 5(5):515–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narumi O, Mori S, Boku S, Tsuji Y, Hashimoto N, Nishikawa S, Yokota Y (2000) OUT, a novel basic helix-loop-helix transcription factor with an Id-like inhibitory activity. J Biol Chem 275(5):3510–3521

    Article  CAS  PubMed  Google Scholar 

  • Nefzger CM, Haynes JM, Pouton CW (2011) Directed expression of Gata2, Mash1, and Foxa2 synergize to induce the serotonergic neuron phenotype during in vitro differentiation of embryonic stem cells. Stem Cells 29(6):928–939

    Article  CAS  PubMed  Google Scholar 

  • Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA (2012) Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Dev Biol 365(2):363–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niehrs C, Schafer A (2012) Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 22(4):220–227

    Article  CAS  PubMed  Google Scholar 

  • Nieto M, Schuurmans C, Britz O, Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29(2):401–413

    Article  CAS  PubMed  Google Scholar 

  • Oda H, Fushimi F, Kato M, Kitagawa M, Araki K, Seki N, Ohkubo H (2005) Microarray analysis of the genes induced by tetracycline-regulated expression of NDRF/NeuroD2 in P19 cells. Biochem Biophys Res Commun 335(2):458–468

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  • Oropez D, Horb M (2012) Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells. Genesis 50(3):271–285

    Article  CAS  PubMed  Google Scholar 

  • Osorio J, Mueller T, Retaux S, Vernier P, Wullimann MF (2010) Phylotypic expression of the bHLH genes Neurogenin2, Neurod, and Mash1 in the mouse embryonic forebrain. J Comp Neurol 518(6):851–871

    Article  CAS  PubMed  Google Scholar 

  • Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10(8):475–478

    Article  CAS  PubMed  Google Scholar 

  • Paling NR, Wheadon H, Bone HK, Welham MJ (2004) Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem 279(46):48063–48070

    Article  CAS  PubMed  Google Scholar 

  • Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, Guillemot F (2002) Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16(3):324–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peltopuro P, Kala K, Partanen J (2010) Distinct requirements for Ascl1 in subpopulations of midbrain GABAergic neurons. Dev Biol 343(1–2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Pesce M, Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19(4):271–278

    Article  CAS  PubMed  Google Scholar 

  • Powell LM, Zur Lage PI, Prentice DR, Senthinathan B, Jarman AP (2004) The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites. Mol Cell Biol 24(21):9517–9526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Razin A, Webb C, Szyf M, Yisraeli J, Rosenthal A, Naveh-Many T, Sciaky-Gallili N, Cedar H (1984) Variations in DNA methylation during mouse cell differentiation in vivo and in vitro. Proc Natl Acad Sci U S A 81(8):2275–2279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4(164):rs3

    Article  PubMed  Google Scholar 

  • Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Roybon L, Hjalt T, Stott S, Guillemot F, Li JY, Brundin P (2009) Neurogenin2 directs granule neuroblast production and amplification while NeuroD1 specifies neuronal fate during hippocampal neurogenesis. PLoS One 4(3):e4779

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13(8):410–418

    Article  CAS  PubMed  Google Scholar 

  • Schuurmans C, Guillemot F (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol 12(1):26–34

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Lim JW, Yellajoshyula D, Chang LW, Kroll KL (2007) Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers. EMBO J 26(24):5093–5108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng N, Xie Z, Wang C, Bai G, Zhang K, Zhu Q, Song J, Guillemot F, Chen YG, Lin A et al (2010) Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proc Natl Acad Sci U S A 107(44):18886–18891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimozaki K, Nakashima K, Niwa H, Taga T (2003) Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development 130(11):2505–2512

    Article  CAS  PubMed  Google Scholar 

  • Spada F, Haemmer A, Kuch D, Rothbauer U, Schermelleh L, Kremmer E, Carell T, Langst G, Leonhardt H (2007) DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J Cell Biol 176(5):565–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sukhanova MJ, Deb DK, Gordon GM, Matakatsu MT, Du W (2007) Proneural basic helix-loop-helix proteins and epidermal growth factor receptor signaling coordinately regulate cell type specification and cdk inhibitor expression during development. Mol Cell Biol 27(8):2987–2996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476

    Article  CAS  PubMed  Google Scholar 

  • Szyf M, Theberge J, Bozovic V (1995) Ras induces a general DNA demethylation activity in mouse embryonal P19 cells. J Biol Chem 270(21):12690–12696

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Mitsui K, Yamanaka S (2003) Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 423(6939):541–545

    Article  CAS  PubMed  Google Scholar 

  • Takizawa N, Koga Y, Ikebe M (2002) Phosphorylation of CPI17 and myosin binding subunit of type 1 protein phosphatase by p21-activated kinase. Biochem Biophys Res Commun 297(4):773–778

    Article  CAS  PubMed  Google Scholar 

  • Thoma EC, Wischmeyer E, Offen N, Maurus K, Siren AL, Schartl M, Wagner TU (2012) Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons. PLoS One 7(6):e38651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uemura O, Okada Y, Ando H, Guedj M, Higashijima S, Shimazaki T, Chino N, Okano H, Okamoto H (2005) Comparative functional genomics revealed conservation and diversification of three enhancers of the isl1 gene for motor and sensory neuron-specific expression. Dev Biol 278(2):587–606

    Article  CAS  PubMed  Google Scholar 

  • Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (2002) GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192(3):327–338

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Neilson KM, Moody SA (2010) Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. Dev Dyn 239(12):3467–3480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Song L, Huang C (2009) Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 9(8):915–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, Ambinder R, Tao Q (2005) The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11(18):6442–6449

    Article  CAS  PubMed  Google Scholar 

  • Zemlickova E, Johannes FJ, Aitken A, Dubois T (2004) Association of CPI-17 with protein kinase C and casein kinase I. Biochem Biophys Res Commun 316(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Piontek J, Wolburg H, Piehl C, Liss M, Otten C, Christ A, Willnow TE, Blasig IE, Abdelilah-Seyfried S (2010) Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc Natl Acad Sci U S A 107(4):1425–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Deo M, Thompson RC, Uhler MD, Turner DL (2012) Negative regulation of Yap during neuronal differentiation. Dev Biol 361(1):103–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Fan Meng for helpful discussions of the microarray data. This work was supported by NIH/NINDSR01NS051472 (MDU), the Medical School of the University of Michigan, and the Pritzker Neuropsychiatric Disorders Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Uhler.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Gene expression of Ascl1, Neurog2, EGFP, and Mtap2 in A6 and N3 cells following Dox treatment. a qRT-PCR analysis of gene expression changes over the course of 8 days in response to 0.5 μg/ml Dox. Treating A6 and N3 cells with 0.5 μg/ml Dox resulted in a transient increase in Ascl1 or Neurog2 expression, respectively. Bicistronic Egfp expression is also transiently induced, with kinetics mirroring bHLH expression for each cell line. Mtap2 expression significantly, but transiently, increases in both cell lines, albeit to a greater extent in response to Neurog2. b qRT-PCR analysis of gene expression in response to varying concentrations of Dox at 48 h. A6 and N3 cells express Ascl1, Neurog2, and Egfp in a dose-dependent manner, with significant increases in gene expression in as low as 100 ng/ml of Dox. While Ascl1 and Neurog2 both induce expression of general neuronal differentiation marker, Mtap2, N3 cells appear to be more sensitive to lower concentrations of Dox (GIF 62 kb)

High-Resolution Image (TIFF 15,577 kb)

Supplementary Fig. 2

Characterization of Isl1 gene regulation by Ascl1 and Neurog2. a qRT-PCR analysis of Isl1 gene expression changes over the course of 8 days in response to 0.5 μg/ml Dox. Isl1 mRNA transiently increases in response to both Ascl1 and Neurog2, with expression peaking 2 days after treatment with Dox. The induction of Isl1 appears to be 2.8-fold higher in response to Ascl1 after 2 days of treatment with Dox. b Western blot for Isl1 protein expression changes over the course of 8 days shows a significant increase in Isl1 protein expression after 2 days of Dox treatment, with elevated levels in response to Ascl1. c qRT-PCR analysis of Isl1 gene expression in response to varying concentrations of Dox again shows higher induction by Ascl1 (GIF 42 kb)

High-Resolution Image (TIFF 3,652 kb)

Supplementary Fig. 3

Analysis of Cldn5 gene expression changes. a qRT-PCR analysis of Cldn5 gene expression changes over the course of 8 days in response to 0.5 μg/ml Dox. Cldn5 exhibits induction by only Ascl1, and the expression is undetectable in response to Neurog2. b Western blot for Cldn5 protein expression changes over the course of 8 days shows a substantial increase in Cldn5 protein expression in response to Ascl1, but not to Neurog2. c qRT-PCR analysis of Cldn5 gene expression in response to varying concentrations of Dox again shows induction by only Ascl1 and not Neurog2 (GIF 42 kb)

High-Resolution Image (TIFF 3,548 kb)

Supplementary Table 1

(DOCX 15 kb)

Supplementary Table 2

(DOCX 34 kb)

Supplementary Table 3

(XLSX 12 kb)

Supplementary Table 4

(XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H.S., Redmond, T.M., Kubish, G.M. et al. Transcriptional Regulatory Events Initiated by Ascl1 and Neurog2 During Neuronal Differentiation of P19 Embryonic Carcinoma Cells. J Mol Neurosci 55, 684–705 (2015). https://doi.org/10.1007/s12031-014-0408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0408-2

Keywords

Navigation