Skip to main content
Log in

Effects of the Anti-Multiple Sclerosis Immunomodulator Laquinimod on Anxiety and Depression in Rodent Behavioral Models

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Laquinimod is a novel oral immunomodulatory drug for the treatment of multiple sclerosis (MS). Considering the frequent co-morbidity of MS with anxiety and depression, we sought to assess the antidepressant and anxiolytic effects of laquinimod in mouse models. Laquinimod (0.5–25 mg/kg), fluoxetine (10 mg/kg) or vehicle were administered for 4–14 days to adult Balb/c mice, followed by behavioral tests and brain BDNF analysis. Following a 4-day administration of laquinimod (5 and 25 mg/kg), an increase in motivated behavior was observed in the forced swim test (p < 0.01 vs. controls). In the open field test, laquinimod (0.5–5 mg/kg), but not fluoxetine, significantly increased motility (p < 0.05), whereas both decreased anxiety behavior (p < 0.01), evident only for laquinimod (5 mg/kg) in the elevated plus maze (p < 0.05). Following 7 days of administration, both drugs decreased anxiety behavior in the elevated plus maze and marble burying tests (p < 0.001 and p < 0.02, respectively). After 14 days, only laquinimod (5 mg/kg) demonstrated anxiolytic efficacy in the open field test (p < 0.05), with evidence of increased BDNF in response to 5–25 mg/kg in the hippocampus, but not frontal cortex (p < 0.05). In conclusion, laquinimod may possess anxiolytic and antidepressant effects, possibly associated with hippocampal BDNF increase, offering promise for MS patients suffering from psychiatric co-morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aharoni R, Saada R, Eilam R, Hayardeny L, Sela M, Arnon R (2012) Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 251(1–2):14–24

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (2010) Practice guideline for the treatment of patients with major depressive disorder, 3rd edn. American Psychiatric Association, Arlington

    Google Scholar 

  • Bakshi R, Czarnecki D, Shaikh ZA et al (2000) Brain MRI lesions and atrophy are related to depression in multiple sclerosis. Neuroreport 11(6):1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Beiske AG, Svensson E, Sandanger I et al (2008) Depression and anxiety amongst multiple sclerosis patients. Eur J Neurol 15(3):239–245

    Article  CAS  PubMed  Google Scholar 

  • Borras C, Rio J, Porcel J, Barrios M, Tintore M, Montalban X (1999) Emotional state of patients with relapsing-remitting MS treated with interferon beta-1b. Neurology 52(8):1636–1639

    Article  CAS  PubMed  Google Scholar 

  • Bruck W, Wegner C (2011) Insight into the mechanism of laquinimod action. J Neurol Sci 306(1–2):173–179

    Article  CAS  PubMed  Google Scholar 

  • Castren E, Hen R (2013) Neuronal plasticity and antidepressant actions. Trends Neurosci 36(5):259–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70(5):289–297

    Article  CAS  PubMed  Google Scholar 

  • Comi G, Jeffery D, Kappos L et al (2012) Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 366(11):1000–1009

    Article  CAS  PubMed  Google Scholar 

  • Comi G, Pulizzi A, Rovaris M et al (2008) Effect of laquinimod on MRI-monitored disease activity in patients with relapsing–remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 371(9630):2085–2092

    Article  CAS  PubMed  Google Scholar 

  • Cowansage KK, LeDoux JE, Monfils MH (2010) Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr Mol Pharmacol 3(1):12–29

    Article  CAS  PubMed  Google Scholar 

  • De Santi L, Annunziata P, Sessa E, Bramanti P (2009) Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neurol Sci 287(1–2):17–26

    Article  PubMed  Google Scholar 

  • Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59(12):1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(8):804–815

    Article  CAS  PubMed  Google Scholar 

  • Feinstein A (2000) Multiple sclerosis, disease modifying treatments and depression: a critical methodological review. Mult Scler 6(5):343–348

    Article  CAS  PubMed  Google Scholar 

  • Feinstein A, Roy P, Lobaugh N, Feinstein K, O’Connor P, Black S (2004) Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology 62(4):586–590

    Article  CAS  PubMed  Google Scholar 

  • Galeazzi GM, Ferrari S, Giaroli G et al (2005) Psychiatric disorders and depression in multiple sclerosis outpatients: impact of disability and interferon beta therapy. Neurol Sci 26(4):255–262

    Article  CAS  PubMed  Google Scholar 

  • Groves JO (2007) Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry 12(12):1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Hagemeier K, Bruck W, Kuhlmann T (2012) Multiple sclerosis—remyelination failure as a cause of disease progression. Histol Histopathol 27(3):277–287

    CAS  PubMed  Google Scholar 

  • Holick KA, Lee DC, Hen R, Dulawa SC (2008) Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 33(2):406–417

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, van Praag H, Gage FH (2000a) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5(3):262–269

    Article  CAS  PubMed  Google Scholar 

  • Jacobs LD, Beck RW, Simon JH et al (2000b) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 343(13):898–904

    Article  CAS  PubMed  Google Scholar 

  • Janssens AC, van Doorn PA, de Boer JB, van der Meche FG, Passchier J, Hintzen RQ (2003) Impact of recently diagnosed multiple sclerosis on quality of life, anxiety, depression and distress of patients and partners. Acta Neurol Scand 108(6):389–395

    Article  CAS  PubMed  Google Scholar 

  • Julian LJ, Vella L, Frankel D, Minden SL, Oksenberg JR, Mohr DC (2009) ApoE alleles, depression and positive affect in multiple sclerosis. Mult Scler 15(3):311–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahl KG, Kruse N, Faller H, Weiss H, Rieckmann P (2002) Expression of tumor necrosis factor-alpha and interferon-gamma mRNA in blood cells correlates with depression scores during an acute attack in patients with multiple sclerosis. Psychoneuroendocrinology 27(6):671–681

    Article  CAS  PubMed  Google Scholar 

  • Korostil M, Feinstein A (2007) Anxiety disorders and their clinical correlates in multiple sclerosis patients. Mult Scler 13(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Liguori M, Fera F, Gioia MC et al (2007) Investigating the role of brain-derived neurotrophic factor in relapsing–remitting multiple sclerosis. Genes Brain Behav 6(2):177–183

    Article  CAS  PubMed  Google Scholar 

  • Liguori M, Fera F, Patitucci A et al (2009) A longitudinal observation of brain-derived neurotrophic factor mRNA levels in patients with relapsing–remitting multiple sclerosis. Brain Res 1256:123–128

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Schechter LE (2005) Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs. Curr Pharm Des 11(2):145–155

    Article  CAS  PubMed  Google Scholar 

  • Nicolas LB, Kolb Y, Prinssen EP (2006) A combined marble burying-locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547(1–3):106–115

    Article  CAS  PubMed  Google Scholar 

  • Overstreet DH (2012) Modeling depression in animal models. Methods Mol Biol 829:125–144

    Article  CAS  PubMed  Google Scholar 

  • Paparrigopoulos T, Ferentinos P, Kouzoupis A, Koutsis G, Papadimitriou GN (2010) The neuropsychiatry of multiple sclerosis: focus on disorders of mood, affect and behaviour. Int Rev Psychiatry 22(1):14–21

    Article  PubMed  Google Scholar 

  • Patten SB, Metz LM (2001) Interferon beta-1 a and depression in relapsing-remitting multiple sclerosis: an analysis of depression data from the PRISMS clinical trial. Mult Scler 7(4):243–248

    CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  • Peruga I, Hartwig S, Thone J et al (2011) Inflammation modulates anxiety in an animal model of multiple sclerosis. Behav Brain Res 220(1):20–29

    Article  PubMed  Google Scholar 

  • Pinheiro SH, Zangrossi H Jr, Del-Ben CM, Graeff FG (2007) Elevated mazes as animal models of anxiety: effects of serotonergic agents. An Acad Bras Cienc 79(1):71–85

    Article  PubMed  Google Scholar 

  • Porcel J, Rio J, Sanchez-Betancourt A et al (2006) Long-term emotional state of multiple sclerosis patients treated with interferon beta. Mult Scler 12(6):802–807

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732

    Article  CAS  PubMed  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  • Pujol J, Bello J, Deus J, Marti-Vilalta JL, Capdevila A (1997) Lesions in the left arcuate fasciculus region and depressive symptoms in multiple sclerosis. Neurology 49(4):1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    Article  CAS  PubMed  Google Scholar 

  • Schiffer RB, Weitkamp LR, Wineman NM, Guttormsen S (1988) Multiple sclerosis and affective disorder. Family history, sex, and HLA-DR antigens. Arch Neurol 45(12):1345–1348

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siegert RJ, Abernethy DA (2005) Depression in multiple sclerosis: a review. J Neurol Neurosurg Psychiatry 76(4):469–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SJ, Young CA (2000) The role of affect on the perception of disability in multiple sclerosis. Clin Rehabil 14(1):50–54

    Article  CAS  PubMed  Google Scholar 

  • Tanis KQ, Newton SS, Duman RS (2007) Targeting neurotrophic/growth factor expression and signaling for antidepressant drug development. CNS Neurol Disord Drug Targets 6(2):151–160

    Article  CAS  PubMed  Google Scholar 

  • Thone J, Ellrichmann G, Seubert S et al (2012) Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am J Pathol 180(1):267–274

    Article  PubMed  Google Scholar 

  • Thone J, Gold R (2011) Laquinimod: a promising oral medication for the treatment of relapsing–remitting multiple sclerosis. Expert Opin Drug Metab Toxicol 7(3):365–370

    Article  CAS  PubMed  Google Scholar 

  • Tselis A (2010) Laquinimod, a new oral autoimmune modulator for the treatment of relapsing–remitting multiple sclerosis. Curr Opin Investig Drugs 11(5):577–585

    CAS  PubMed  Google Scholar 

  • Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26(4):327–337

    Article  CAS  PubMed  Google Scholar 

  • Zivadinov R, Zorzon M, Tommasi MA et al (2003) A longitudinal study of quality of life and side effects in patients with multiple sclerosis treated with interferon beta-1a. J Neurol Sci 216(1):113–118

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben H. Amit.

Additional information

Irit Gil-Ad and Ben H. Amit are equal contributors and co-authors of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Ad, I., Amit, B.H., Hayardeni, L. et al. Effects of the Anti-Multiple Sclerosis Immunomodulator Laquinimod on Anxiety and Depression in Rodent Behavioral Models. J Mol Neurosci 55, 552–560 (2015). https://doi.org/10.1007/s12031-014-0387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0387-3

Keywords

Navigation