Skip to main content

Advertisement

Log in

DNA Damage Is a Potential Marker for TP53 Mutation in Colorectal Carcinogenesis

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

The ability to measure oxidative DNA damage in a tissue allows establishment of the relationship between DNA damage and mutations in normal and neoplastic cells. It is well known that TP53 is a key inhibitor of tumor development and preserves the genome integrity in each cell. The aim of the present study was to investigate the relationship between DNA damage and TP53 mutation in colorectal adenoma and adenocarcinoma, and the value of DNA damage as potential marker of TP53 mutation in non-tumor tissues adjacent to colon malignant lesions.

Methods

Tissue samples were obtained by colonoscopy from patients with adenoma and/or adenocarcinoma and from healthy volunteers. Diagnosis was defined by histopathology. Immunohistochemistry with computer-assisted image analysis was performed to quantify TP53 mutation. Oxidative DNA damage was determined by comet assay. Statistical analyses were performed with 5 % of significance level.

Results

The TP53 level was higher in non-tumor tissues from tumor patients than in normal tissues from healthy volunteers (p = 0.01). Likewise, higher TP53 levels were observed in tumor tissues compared with the non-tumor tissues (p = 0.00). Oxidative DNA damage levels were higher in tumor tissues than in non-tumor tissues (p = 0.00). The amount of TP53 (p = 0.00) and oxidative DNA damage (p = 0.00) in normal and tumor tissue was related. The relationship between oxidative DNA damage and TP53 mutation was demonstrated in all samples (p = 0.00).

Conclusion

Oxidative DNA damage is an intervening variable for TP53 mutation in colorectal adenoma-carcinoma. Our data suggests that oxidative DNA damage is a potential marker of TP53 mutation in colorectal carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ribeiro ML, Priolli DG, Miranda DD, Pedrazzoli Jr J, Martinez CA. Analysis of oxidative DNA damage in patients with colorectal cancer. Clin Colorectal Cancer. 2008;7(4):267–72.

    Article  PubMed  Google Scholar 

  2. Priolli DG, Canelloi TP, Lopes CO, Valdívia JC, Martinez NP, Açari DP, et al. Oxidative DNA damage and β-catenin expression in colorectal cancer evolution. Int J Color Dis. 2013;28(5):713–22.

    Article  Google Scholar 

  3. Ames B, Shigenaga M, Hagen T. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993;90:7915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halliwell B, Gutteridge JM. The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990;280(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  5. Seril DAN, Liao J, Yang GY, Yang CS. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animals models. Carcinogenesis. 2003;24:353–62.

    Article  CAS  PubMed  Google Scholar 

  6. Kawanishi S, Hiraku Y, Pinlaor S, Ma N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem. 2006;387(4):365–72.

    Article  CAS  PubMed  Google Scholar 

  7. Eurogast Study Group. An international association between Helicobacter pylori infection and gastric cancer. Lancet. 1993;341:1359–62.

    Article  Google Scholar 

  8. Yamaguchi K, Sugano K, Fukayama N, Nakashima Y, Saotome K, Yokoyama T, et al. Polymerase chain reaction-based approaches for detection of allelic loss in the p53 tumor suppressor gene in colon neoplasms. Am J Gastroenterol. 1997;92:307–12.

    CAS  PubMed  Google Scholar 

  9. Ribeiro Jr U, Safatle-Ribeiro AV. p53 in clinical contexts: yes or not? Arq Gastroenterol. 2006;43(1):6–7.

    Article  PubMed  Google Scholar 

  10. Kaklamanis L, Gatter KC, Mortensen N, Baigrie RJ, Harriet A, Lane DP, et al. p53 expression in colorectal adenomas. Am J Pathol. 1993;142(1):87–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brand L, Munding J, Pox CP, Ziebarth W, Reiser M, Hüppe D, et al. ß-catenin, Cox-2 and p53 immunostaining in colorectal adenomas to predict recurrence after endoscopic polypectomy. Int J Color Dis. 2013;28(8):1091–8.

    Article  Google Scholar 

  12. Martinez CAR, Priolli DG, Cardinalli IA, Pereira JA, Portes AV, Margarido NF. Influência da localização do tumor na expressão tecidual da proteína p53 em doentes com câncer colorretal: estudo de 100 casos. Rev Col Bras Cir. 2008;35(4):235–43.

    Article  Google Scholar 

  13. Felin CR, Rocha AB, Felin IPD, Regner A, Grivicich I. Expressão das proteínas p53 e Cox-2 em adenocarcinoma intestinal e mucosa adjacente. Rev Bras Coloproct. 2008;28(1):19–25.

    Article  Google Scholar 

  14. Fearon ER, Vogelstein BA. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    Article  CAS  PubMed  Google Scholar 

  15. Priolli DG, Martinez CAR, Cardinalli H, Margarido NF, Waisberg J. Morphofunctional staging is a valuable prognostic factor for colorectal cancer and it correlates with plasma CEA levels. Arq Gastroenterol. 2010;47(3):225–32.

    Article  PubMed  Google Scholar 

  16. Kin H, Jen J, Vogelstein B, Hamilton SR. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 1994;145:148–56.

    Google Scholar 

  17. Itzkowitz SH, Yio X. Inflammation and cancer. IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7–17.

    Article  CAS  PubMed  Google Scholar 

  18. Lima JM, Serafim PVP, Silva IDCG, Forones NM. Role of the genetic polymorphism of p53 (codon 72) gene in colorectal cancer. Arq Gastroenterol. 2006;43(1):8–13.

    Article  PubMed  Google Scholar 

  19. Kondo S, Toyokuni S, Iwasa Y, Tanaka T, Onodera H, Hiai H, et al. Persistent oxidative stress in human colorectal carcinoma, but not in adenoma. Free Radic Biol Med. 1999;27(3–4):401–10.

    Article  CAS  PubMed  Google Scholar 

  20. Balasubramanyam M, Adaikalakoteswari A, Sameermahmood Z, Mohan V. Biomarkers of oxidative stress: methods and measures of oxidative DNA damage (COMET assay) and telomere shortening. Free Methods Mol Biol. 2010;610:245–61.

    Article  CAS  Google Scholar 

  21. Redon CE, Dickey JS, Nakamura AJ, Kareva IG, Naf D, Nowsheen S, et al. Tumors induce complex DNA damage in distant proliferative tissues in vivo. Proc Natl Acad Sci U S A. 2010;107(42):17992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oliva MR, Ripoll F, Muñiz P, Iradi A, Trullenque R, Valls V, et al. Genetic alterations and oxidative metabolism in sporadic colorectal tumors from a Spanish community. Mol Carcinog. 1997;18(4):232–43.

    Article  CAS  PubMed  Google Scholar 

  23. Pool-Zobel BL, Abrahamse SL, Collins AR, Kark W, Gugler R, Oberreuther D, et al. Analysis of DNA strand breaks, oxidized bases, and glutathione S-transferase P1 in human colon cells from biopsies. Cancer Epidemiol Biomarkers Prev. 1999;8:609–14.

    CAS  PubMed  Google Scholar 

  24. Vojtĕšek B, Bártek J, Midgley CA, Lene DP. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods. 1992;151:237–44.

    Article  PubMed  Google Scholar 

  25. Fugita A, Severino P, Kojima K, Sato JR, Patriota AG, Miyano S. Functional clustering of time series gene expression data by Granger causality. BMC Syst Biol. 2012;6:137.

    Article  Google Scholar 

  26. Pool-Zobel BL, Leucht U. Induction of DNA damage by risk factors of colon cancer in human colon cells derived from biopsies. Mutat Res. 1997;375(2):105–15.

    Article  CAS  PubMed  Google Scholar 

  27. American Cancer Society. Cancer Facts & Figures (2013) Atlanta, American Cancer Society, 2013. http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures. Accessed June 10 2014.

  28. Gedik CM, Boyle SP, Wood SG, Vaughan NJ, Collins AR. Oxidative stress in humans: validation of biomarkers of DNA damage. Carcinogenesis. 2002;23(9):1441–6.

    Article  CAS  PubMed  Google Scholar 

  29. Goodman M, Bostick RM, Dash C, Terry P, Flanders WD, Mandel J. A summary measure of pro- and anti-oxidant exposures and risk of incident, sporadic, colorectal adenomas. Cancer Causes Control. 2008;19(10):1051–64.

    Article  PubMed  Google Scholar 

  30. Leung EY, Crozier JE, Talwar D, O’Reilly DS, McKee RF, Horgan PG, et al. Vitamin antioxidants, lipid peroxidation, tumor stage, the systemic inflammatory response and survival in patients with colorectal cancer. Int J Cancer. 2008;123(10):2460–4.

    Article  CAS  PubMed  Google Scholar 

  31. Blasi MF, Ventura I, Aquilina G, Degan P, Bertario L, Bassi C, et al. A human cell-based assay to evaluate the effects of alterations in the MLH1 mismatch repair gene. Cancer Res. 2006;66(18):9036–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP-Sao Paulo Research Foundation (Project number 2007/01196-5 and 2011/04634-1) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Gonçalves Priolli.

Ethics declarations

Approval to carry out the present study was obtained from the Research Ethics Committee at São Francisco University (protocol number: 0219.0.142.000-10) and in accordance with the Helsinki Declaration of 1975, as revised in 1983. All the patients signed a free and informed consent statement after receiving information about all the stages of the study.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scalise, J.R., Poças, R.C.G., Caneloi, T.P. et al. DNA Damage Is a Potential Marker for TP53 Mutation in Colorectal Carcinogenesis. J Gastrointest Canc 47, 409–416 (2016). https://doi.org/10.1007/s12029-016-9846-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-016-9846-0

Keywords

Navigation