Skip to main content

Advertisement

Log in

Only Very Early Oxygen Therapy Attenuates Posthemorrhagic Edema Formation and Blood–Brain Barrier Disruption in Murine Intracerebral Hemorrhage

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background and purpose

Perihematomal edema exacerbates the mass effect of hematoma and contributes to early neurological deterioration after intracerebral hemorrhage (ICH). Oxygen therapy has protective effects on the blood–brain barrier (BBB). We aimed to examine the effects of oxygen therapy on edema formation and BBB permeability after ICH.

Methods

ICH was induced in mice by injecting autologous blood (30 µL) or collagenase (0.03 U) intrastriatally. Development of posthemorrhagic edema formation and BBB disruption was characterized by wet-dry-weight assays and sodium- fluorescein fluorospectrometry 1d, 3d, and 7d after ICH induction. In subsequent experiments, mice received air, normobaric (NBO), or hyperbaric oxygen (HBO; 3ata) for 60 min starting either 30, 60, or 120 min after ICH induction. Expression of occludin, claudin-5, zonula occludens-1, matrix metalloproteinases (MMPs), and hypoxia-inducible factor-1α (HIF-1α) was measured by Western blot and zymography.

Results

Posthemorrhagic edema formation (water content: blood-injection model 80.6 ± 0.3 %; collagenase injection model 83.3 ± 0.7 %) and BBB disruption (interhemispheric ratio of extravasated sodium fluorescein: blood-injection model 1.75 ± 0.07; collagenase injection model 3.02 ± 0.15) peaked 3d after ICH. NBO and HBO initiated within 30 min of ICH induction attenuated edema formation and BBB disruption (interhemispheric ratio of fluorescein; blood-injection air 1.75 ± 0.12, NBO 1.52 ± 0.08, HBO 1.49 ± 0.09; collagenase: air 3.04 ± 0.23, NBO 2.25 ± 0.21, HBO 2.17 ± 0.23) 3d after ICH, whereas delayed oxygen therapy had no effect. Early oxygen therapies prevented occludin degradation, MMP-9 activation, and reduced HIF-1α expression.

Conclusion

Very early oxygen therapy can attenuate edema formation and BBB disruption after ICH, but the brief therapeutic time window suggests that the translational potential is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Broderick J, Connolly S, Feldmann E, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults. Stroke. 2007;38:2001–23.

    Article  PubMed  Google Scholar 

  2. Arima H, Wang JG, Huang Y, et al. Significance of perihematomal edema in acute intracerebral hemorrhage. Neurology. 2009;73:1963–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994;44:1379.

    Article  CAS  PubMed  Google Scholar 

  4. Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30:1167–73.

    Article  CAS  PubMed  Google Scholar 

  5. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.

    Article  PubMed  Google Scholar 

  6. Veltkamp R, Siebing DA, Sun L, et al. Hyperbaric oxygen reduces blood–brain barrier damage and edema after transient focal cerebral ischemia. Stroke. 2005;36:1679–83.

    Article  PubMed  Google Scholar 

  7. Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH. Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology. 2002;58:945–52.

    Article  PubMed  Google Scholar 

  8. Liu W, Hendren J, Qin X-J, Shen J, Liu KJ. Normobaric hyperoxia attenuates early blood–brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem. 2009;108:811–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ostrowski RP, Colohan ART, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25:554–71.

    Article  CAS  PubMed  Google Scholar 

  10. Niklas A, Brock D, Schober R, Schulz A, Schneider D. Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation: HBO effects on brain edema and necrosis after severe brain trauma in rabbits. J Neurol Sci. 2004;219:77–82.

    Article  CAS  PubMed  Google Scholar 

  11. Qin Z, Xi G, Keep RF, Silbergleit R, He Y, Hua Y. Hyperbaric oxygen for experimental intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:113–7.

    Article  CAS  PubMed  Google Scholar 

  12. Qin Z, Song S, Xi G, et al. Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurg Focus. 2007;22:1–6.

    Article  Google Scholar 

  13. Illanes S, Zhou W, Heiland S, Markus Z, Veltkamp R. Kinetics of hematoma expansion in murine warfarin-associated intracerebral hemorrhage. Brain Res. 2010;1320:135–42.

    Article  CAS  PubMed  Google Scholar 

  14. Yang G-Y, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J Neurosurg. 1994;81:93–102.

    Article  CAS  PubMed  Google Scholar 

  15. Schallert T, Upchurch M, Wilcox RE, Vaughn DM. Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol Biochem Behav. 1983;18:753–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sun L, Zhou W, Mueller C, et al. Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:1651–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Semenza GL. Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Investig. 2000;106:809–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jiang Y, Wu J, Keep RF, Hua Y, Hoff JT, Xi G. Hypoxia-inducible factor-1a accumulation in the brain after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2002;22:689–96.

    Article  CAS  PubMed  Google Scholar 

  19. Enzmann DR, Britt RH, Lyons BE, Buxton JL, Wilson DA. Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology. Am J Neuroradiol. 1981;2:517–26.

    CAS  PubMed  Google Scholar 

  20. Tomita H, Ito U, Ohno K, Hirakawa K. Chronological changes in brain edema induced by experimental intracerebral hematoma in cats. Acta Neurochir Suppl. 1994;60:558–60.

    CAS  PubMed  Google Scholar 

  21. Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.

    Article  CAS  PubMed  Google Scholar 

  22. Venkatasubramanian C, Mlynash M, Finley-Caulfield A, et al. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011;42:73–80.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Bauer AT, Burgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30:837–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lou M, Eschenfelder CC, Herdegen T, Brecht S, Deuschl G. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke. 2004;35:578–83.

    Article  PubMed  Google Scholar 

  25. Badr A, Yin W, Mychaskiw G, Zhang J. Dual effect of HBO on cerebral infarction in MCAO rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R766–70.

    CAS  PubMed  Google Scholar 

  26. Wang X-L, Zhao Y-s, Yang Y-J, Xie M, Yu X-H. Therapeutic window of hyperbaric oxygen therapy for hypoxic-ischemic brain damage in newborn rats. Brain Res. 2008;1222:87–94.

    Article  CAS  PubMed  Google Scholar 

  27. Veltkamp R, Bieber K, Wagner S, et al. Hyperbaric oxygen reduces basal lamina degradation after transient focal cerebral ischemia in rats. Brain Res. 2006;1076:231–7.

    Article  CAS  PubMed  Google Scholar 

  28. Sun L, Marti HH, Veltkamp R. Hyperbaric oxygen reduces tissue hypoxia and hypoxia-inducible factor-1α expression in focal cerebral ischemia. Stroke. 2008;39:1000–6.

    Article  CAS  PubMed  Google Scholar 

  29. González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1–44.

    Article  PubMed  Google Scholar 

  30. Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.

    Article  CAS  PubMed  Google Scholar 

  31. Hanna SC, Krishnan B, Bailey ST, et al. HIF1α and HIF2α independently activate SRC to promote melanoma metastases. J Clin Investig. 2013;123:2078.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Valable S, Montaner J, Bellail A, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-1. J Cereb Blood Flow Metab. 2005;25:1491–504.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao B-Q, Wang S, Kim H-Y, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12:441–5.

    Article  CAS  PubMed  Google Scholar 

  34. Yu Z, Chen L-F, Tang L, Hu C-L. Effects of recombinant adenovirus-mediated hypoxia-inducible factor-1alpha gene on proliferation and differentiation of endogenous neural stem cells in rats following intracerebral hemorrhage. Asian Pac J Trop Med. 2013;6:762–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sunami K, Takeda Y, Hashimoto M, Hirakawa M. Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med. 2000;28:2831–6.

    Article  CAS  PubMed  Google Scholar 

  36. Schäbitz W-R, Schade H, Heiland S, et al. Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MRI. Stroke. 2004;35:1175–9.

    Article  PubMed  Google Scholar 

  37. Hu Q, Liang X, Chen D, et al. Delayed hyperbaric oxygen therapy promotes neurogenesis through reactive oxygen species/hypoxia-inducible factor-1α/β-catenin pathway in middle cerebral artery occlusion rats. Stroke. 2014.

Download references

Acknowledgments

This work was supported by a Grant from the Deutsche Forschungsgemeinschaft (DFG VE 196/2-1).

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Veltkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Marinescu, M. & Veltkamp, R. Only Very Early Oxygen Therapy Attenuates Posthemorrhagic Edema Formation and Blood–Brain Barrier Disruption in Murine Intracerebral Hemorrhage. Neurocrit Care 22, 121–132 (2015). https://doi.org/10.1007/s12028-014-0013-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-0013-9

Keywords

Navigation