Skip to main content

Advertisement

Log in

Hyponatremia and Brain Injury: Historical and Contemporary Perspectives

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Hyponatremia is common in neurocritical care patients and is associated with significant morbidity and mortality. Despite decades of research into the syndrome of inappropriate antidiuretic hormone (SIADH) and cerebral salt wasting (CSW), their underlying pathophysiological mechanisms are still not fully understood. This paper reviews the history behind our understanding of hyponatremia in patients with neurologic injury, including the first reports of CSW and SIADH, and current and future challenges to diagnosis and management in this setting. Such challenges include distinguishing CSW, SIADH, and hypovolemic hyponatremia due to a normal pressure natriuresis from the administration of large volumes of fluids, and hyponatremia due to certain medications used in the neurocritical care population. Potential treatments for hyponatremia include mineralocorticoids and vasopressin 2 receptor antagonists, but further work is required to validate their usage. Ultimately, a greater understanding of the pathophysiological mechanisms underlining hyponatremia in neurocritical care patients remains our biggest obstacle to optimizing patient outcomes in this challenging population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boscoe A, Paramore C, Verbalis JG. Cost of illness of hyponatremia in the United States. Cost Eff Resour Alloc. 2006;4:10.

    Article  PubMed  Google Scholar 

  2. Tisdall M, Crocker M, Watkiss J, Smith M. Disturbances of sodium in critically ill adult neurologic patients: a clinical review. J Neurosurg Anesthesiol. 2006;18(1):57–63.

    Article  PubMed  Google Scholar 

  3. Rabinstein AA, Wijdicks EF. Hyponatremia in critically ill neurological patients. Neurologist. 2003;9:290–300.

    Article  PubMed  Google Scholar 

  4. DeVita MV, Gardenswartz MH, Konecky A, Zabetakis PM. Incidence and etiology of hyponatremia in an intensive care unit. Clin Nephrol. 1990;34(4):163–6.

    PubMed  CAS  Google Scholar 

  5. Bennani SL, Abouqal R, Zeggwagh AA, et al. Incidence, causes and prognostic factors of hyponatremia in intensive care. Rev Med Interne. 2003;24(4):224–9.

    Article  PubMed  Google Scholar 

  6. Hoorn EJ, Lindemans J, Zietse R. Development of severe hyponatraemia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol Dial Transplant. 2006;21(1):70–6.

    Article  PubMed  Google Scholar 

  7. Zada G, Liu CY, Fishback D, Singer PA, Weiss MH. Recognition and management of delayed hyponatremia following transsphenoidal pituitary surgery. J Neurosurg. 2007;106(1):66–71.

    Article  PubMed  CAS  Google Scholar 

  8. Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119(7 Suppl 1):S30–5.

    Article  PubMed  CAS  Google Scholar 

  9. Sherlock M, O’Sullivan E, Agha A, et al. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. Clin Endocrinol (Oxf). 2006;64(3):250–4.

    Article  Google Scholar 

  10. Sata A, Hizuka N, Kawamata T, Hori T, Takano K. Hyponatremia after transsphenoidal surgery for hypothalamo-pituitary tumors. Neuroendocrinology. 2006;83(2):117–22.

    Article  PubMed  CAS  Google Scholar 

  11. Peruzzi WT, Shapiro BA, Meyer PR Jr, Krumlovsky F, Seo BW. Hyponatremia in acute spinal cord injury. Crit Care Med. 1994;22(2):252–8.

    Article  PubMed  CAS  Google Scholar 

  12. Kurokawa Y, Uede T, Ishiguro M, et al. Pathogenesis of hyponatremia following subarachnoid hemorrhage due to ruptured cerebral aneurysm. Surg Neurol. 1996;46(5):500–7; discussion 507–8.

    Article  PubMed  CAS  Google Scholar 

  13. Callewart CC, Minchew JT, Kanim LE, et al. Hyponatremia and syndrome of inappropriate antidiuretic hormone secretion in adult spinal surgery. Spine (Phila Pa 1976) 1994;19(15):1674–9.

    Google Scholar 

  14. Diringer MN, Zazulia AR. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist. 2006;12:117–26.

    Article  PubMed  Google Scholar 

  15. Adrogue HJ. Consequences of inadequate management of hyponatremia. Am J Nephrol. 2005;25:240–9.

    Article  PubMed  Google Scholar 

  16. Dellabarca C, Servilla KS, Hart B, Murata GH, Tzamaloukas AH. Osmotic myelinolysis following chronic hyponatremia corrected at an overall rate consistent with current recommendations. Int Urol Nephrol. 2005;37:171–3.

    Article  PubMed  Google Scholar 

  17. Cushny AR. The secretion of the urine. London: Longman’s Green & Co; 1926.

    Google Scholar 

  18. Jungmann J, Meyer E. Experimentelle Untersuchungen ueber die Abhaengigkeit der Nierenfunktion vom Nervensystem. Archiv f Exp Path und Pharm. 1913;73:49.

    Article  Google Scholar 

  19. Peters JP, Welt LG, Sims EA, Orloff J, Needham J. A salt-wasting syndrome associated with cerebral disease. Trans Assoc Am Physicians. 1950;63:57–64.

    PubMed  CAS  Google Scholar 

  20. Welt LG, Seldin DW, Nelson WP, German WJ, Peters JP. Role of the central nervous system in metabolism of electrolytes and water. AMA Arch Intern Med. 1952;90(3):355–78.

    Article  PubMed  CAS  Google Scholar 

  21. Kaplan SA, Rapoport S. Urinary excretion of sodium and chloride after splanchnicotomy; effect on the proximal tubule. Am J Physiol. 1951;164(1):175–81.

    PubMed  CAS  Google Scholar 

  22. Cort JH. Cerebral salt wasting. Lancet. 1954;266(6815):752–4.

    Article  PubMed  CAS  Google Scholar 

  23. Schwartz WB, Bennett W, Curelop S, Bartter FC. Syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med. 1957;23:529–42.

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz WB, Tassel D, Bartter FC. Further observations on hyponatremia and renal sodium loss probably resulting from inappropriate secretion of antidiuretic hormone. N Engl J Med. 1960;262:743–8.

    Article  PubMed  CAS  Google Scholar 

  25. Leaf A, Bartter FC, Santos RF, Wrong O. Evidence in man that urinary electrolyte loss induced by pitressin is function of water retention. J Clin Invest. 1953;32:868–78.

    Article  PubMed  CAS  Google Scholar 

  26. Epstein FH, Levitin H. “Cerebral salt-wasting”: example of sustained inappropriate release of antidiuretic horone. J Clin Invest. 1959;38:1001.

    Article  Google Scholar 

  27. Carter NW, Rector FC Jr, Seldin DW. Pathogenesis of persistent hyponatremia with water retention in cerebral disease. Clin Res. 1959;7:273.

    Google Scholar 

  28. Carter NW, Rector FC Jr, Seldin DW. Hyponatremia in cerebral disease resulting from the inappropriate secretion of antidiuretic hormone. N Engl J Med. 1961;264:67–72.

    Article  PubMed  CAS  Google Scholar 

  29. Nelson PB, Seif SM, Maroon JC, Robinson AG. Hyponatremia in intracranial disease: perhaps not the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Neurosurg. 1981;55(6):938–41.

    Article  PubMed  CAS  Google Scholar 

  30. Oh MS, Carroll HJ. Cerebral salt-wasting syndrome. We need better proof of its existence. Nephron. 1999;82(2):110–4.

    Article  PubMed  CAS  Google Scholar 

  31. Betjes MG. Hyponatremia in acute brain disease: the cerebral salt wasting syndrome. Eur J Intern Med. 2002;13(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  32. Wijdicks EF, Vermeulen M, ten Haaf JA, et al. Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol. 1985;18(2):211–6.

    Article  PubMed  CAS  Google Scholar 

  33. Sivakumar V, Rajshekhar V, Chandy MJ. Management of neurosurgical patients with hyponatremia and natriuresis. Neurosurgery. 1994;34(2):269–74.

    Article  PubMed  CAS  Google Scholar 

  34. Audibert G, Steinmann G, de Talance N, et al. Endocrine response after severe subarachnoid hemorrhage related to sodium and blood volume regulation. Anesth Analg. 2009;108(6):1922–8.

    Article  PubMed  Google Scholar 

  35. Doczi T, Bende J, Huszka E, Kiss J. Syndrome of inappropriate secretion of antidiuretic hormone after subarachnoid hemorrhage. Neurosurgery. 1981;9(4):394–7.

    Article  PubMed  CAS  Google Scholar 

  36. Sherlock M, O’Sullivan E, Agha A, et al. Incidence and pathophysiology of severe hyponatraemia in neurosurgical patients. Postgrad Med J. 2009;85:171–5.

    Article  PubMed  CAS  Google Scholar 

  37. Brimioulle S, Orellana-Jimenez C, Aminian A, Vincent JL. Hyponatremia in neurological patients: cerebral salt wasting versus inappropriate antidiuretic hormone secretion. Intensive Care Med. 2008;34(1):125–31.

    Article  PubMed  CAS  Google Scholar 

  38. Rahman M, Friedman WA. Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery. 2009;65:925–36.

    Article  PubMed  Google Scholar 

  39. Singh S, Bohn D, Carlotti AP, et al. Cerebral salt wasting: truths, fallacies, theories, and challenges. Crit Care Med. 2002;30(11):2575–9.

    Article  PubMed  Google Scholar 

  40. Shamiss A, Peleg E, Rosenthal T, Ezra D. The role of atrial natriuretic peptide in the diuretic effect of Ca2+ entry blockers. Eur J Pharmacol. 1993;233(1):113–7.

    Article  PubMed  CAS  Google Scholar 

  41. Fiad TM, Cunningham SK, Hayes FJ, McKenna TJ. Effects of nifedipine treatment on the renin-angiotensin-aldosterone axis. J Clin Endocrinol Metab. 1997;82(2):457–60.

    Article  PubMed  CAS  Google Scholar 

  42. Kosaka H, Hirayama K, Yoda N, et al. The L-, N-, and T-type triple calcium channel blocker benidipine acts as an antagonist of mineralocorticoid receptor, a member of nuclear receptor family. Eur J Pharmacol. 2010;635(1–3):49–55.

    Article  PubMed  CAS  Google Scholar 

  43. Sterns RH, Silver SM. Cerebral salt wasting versus SIADH: what difference? J Am Soc Nephrol. 2008;19(2):194–6.

    Article  PubMed  Google Scholar 

  44. Taplin CE, Cowell CT, Silink M, Ambler GR. Fludrocortisone therapy in cerebral salt wasting. Pediatrics. 2006;118(6):e1904–8.

    Article  PubMed  Google Scholar 

  45. Chung HM, Kluge R, Schrier RW, Anderson RJ. Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med. 1987;83(5):905–8.

    Article  PubMed  CAS  Google Scholar 

  46. Verbalis JG. Vasopressin V2 receptor antagonists. J Mol Endocrinol. 2002;29(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  47. Schrier RW. Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Intern Med. 1990;113(2):155–9.

    Article  PubMed  CAS  Google Scholar 

  48. Harrigan MR. Cerebral salt wasting syndrome: a review. Neurosurgery. 1996;38(1):152–60.

    Article  PubMed  CAS  Google Scholar 

  49. Maesaka JK, Gupta S, Fishbane S. Cerebral salt-wasting syndrome: does it exist? Nephron. 1999;82(2):100–9.

    Article  PubMed  CAS  Google Scholar 

  50. Damaraju SC, Rajshekhar V, Chandy MJ. Validation study of a central venous pressure-based protocol for the management of neurosurgical patients with hyponatremia and natriuresis. Neurosurgery. 1997;40(2):312–6; discussion 316–7.

    Article  PubMed  CAS  Google Scholar 

  51. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.

    Article  PubMed  Google Scholar 

  52. Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monit Comput. 2012;26(5):347–53.

    Article  PubMed  Google Scholar 

  53. Bennington S, Ferris P, Nirmalan M. Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy. Eur J Anaesthesiol. 2009;26(11):893–905.

    Article  Google Scholar 

  54. Sayama T, Inamura T, Matsushima T, et al. High incidence of hyponatremia in patients with ruptured anterior communicating artery aneurysms. Neurol Res. 2000;22(2):151–5.

    PubMed  CAS  Google Scholar 

  55. Qureshi AI, Suri MF, Sung GY, et al. Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50(4):749–55; discussion 755–6.

    Article  PubMed  Google Scholar 

  56. Hasan D, Wijdicks EF, Vermeulen M. Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol. 1990;27(1):106–8.

    Article  PubMed  CAS  Google Scholar 

  57. Wijdicks EF, Vermeulen M, Hijdra A, van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol. 1985;17(2):137–40.

    Article  PubMed  CAS  Google Scholar 

  58. Isotani E, Suzuki R, Tomita K, et al. Alterations in plasma concentrations of natriuretic peptides and antidiuretic hormone after subarachnoid hemorrhage. Stroke. 1994;25(11):2198–203.

    Article  PubMed  CAS  Google Scholar 

  59. Wijdicks EF, Ropper AH, Hunnicutt EJ, Richardson GS, Nathanson JA. Atrial natriuretic factor and salt wasting after aneurysmal subarachnoid hemorrhage. Stroke. 1991;22(12):1519–24.

    Article  PubMed  CAS  Google Scholar 

  60. Wijdicks EF, Schievink WI, Burnett JC Jr. Natriuretic peptide system and endothelin in aneurysmal subarachnoid hemorrhage. J Neurosurg. 1997;87(2):275–80.

    Article  PubMed  CAS  Google Scholar 

  61. Espiner EA, Leikis R, Ferch RD, et al. The neuro-cardio-endocrine response to acute subarachnoid haemorrhage. Clin Endocrinol (Oxf). 2002;56(5):629–35.

    Article  CAS  Google Scholar 

  62. Diringer M, Ladenson PW, Stern BJ, Schleimer J, Hanley DF. Plasma atrial natriuretic factor and subarachnoid hemorrhage. Stroke. 1988;19(9):1119–24.

    Article  PubMed  CAS  Google Scholar 

  63. Nakagawa I, Kurokawa S, Nakase H. Hyponatremia is predictable in patients with aneurysmal subarachnoid hemorrhage—clinical significance of serum atrial natriuretic peptide. Acta Neurochir (Wien). 2010;152(12):2147–52.

    Article  Google Scholar 

  64. Berendes E, Walter M, Cullen P, et al. Secretion of brain natriuretic peptide in patients with aneurysmal subarachnoid haemorrhage. Lancet. 1997;349(9047):245–9.

    Article  PubMed  CAS  Google Scholar 

  65. Tomida M, Muraki M, Uemura K, Yamasaki K. Plasma concentrations of brain natriuretic peptide in patients with subarachnoid hemorrhage. Stroke. 1998;29(8):1584–7.

    Article  PubMed  CAS  Google Scholar 

  66. Sviri GE, Feinsod M, Soustiel JF. Brain natriuretic peptide and cerebral vasospasm in subarachnoid hemorrhage. Clinical and TCD correlations. Stroke. 2000;31(1):118–22.

    Article  PubMed  CAS  Google Scholar 

  67. McGirt MJ, Blessing R, Nimjee SM, et al. Correlation of serum brain natriuretic peptide with hyponatremia and delayed ischemic neurological deficits after subarachnoid hemorrhage. Neurosurgery. 2004;54(6):1369–73; discussion 1373–4.

    Article  PubMed  Google Scholar 

  68. Tung PP, Olmsted E, Kopelnik A, et al. Plasma B-type natriuretic peptide levels are associated with early cardiac dysfunction after subarachnoid haemorrhage. Stroke. 2005;36(7):1567–9.

    Article  PubMed  CAS  Google Scholar 

  69. Inoha S, Inamura T, Nakamizo A, et al. Fluid loading in rats increases serum brain natriuretic peptide concentration. Neurol Res. 2001;23(1):93–5.

    Article  PubMed  CAS  Google Scholar 

  70. Powner DJ, Hergenroeder GW, Awili M, Atik MA, Robertson C. Hyponatremia and comparison of NT-pro-BNP concentrations in blood samples from jugular bulb and arterial sites after traumatic brain injury in adults: a pilot study. Neurocrit Care. 2007;7(2):119–23.

    Article  PubMed  CAS  Google Scholar 

  71. Juul R, Edvinsson L, Ekman R, et al. Atrial natriuretic peptide-LI following subarachnoid haemorrhage in man. Acta Neurochir (Wien). 1990;106(1–2):18–23.

    Article  CAS  Google Scholar 

  72. Oropello JM, Weiner L, Benjamin E. Hypertensive, hypervolemic, hemodilutional therapy for aneurysmal subarachnoid hemorrhage. Is it efficacious? No. Crit Care Clin. 1996;12(3):709–30.

    Article  PubMed  CAS  Google Scholar 

  73. Clifton GL, Ziegler MG, Grossman RG. Circulating catecholamines and sympathetic activity after head injury. Neurosurgery. 1981;8(1):10–4.

    Article  PubMed  CAS  Google Scholar 

  74. Israel A, Torres M, Cierco M, Barbella Y. Further evidence for a dopaminergic involvement in the renal action of centrally administered atrial natriuretic peptide in rats. Brain Res Bull. 1991;27(5):739–42.

    Article  PubMed  CAS  Google Scholar 

  75. Aperia AC. Renal dopamine system and salt balance. Am J Kidney Dis. 1998; 31:xlii–v.

    Google Scholar 

  76. Egge A, Waterloo K, Sjoholm H, et al. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49(3):605–6.

    Google Scholar 

  77. Muench E, Horn P, Bauhuf C, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35(8):1844–51.

    Article  PubMed  Google Scholar 

  78. Diringer MN, Bleck TP, Claude Hemphill J 3rd, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care. 2011;15(2):211–40.

    Article  PubMed  Google Scholar 

  79. Cole CD, Gottfried ON, Liu JK, Couldwell WT. Hyponatremia in the neurosurgical patient: diagnosis and management. Neurosurg Focus. 2004;16(4):E9.

    Article  PubMed  Google Scholar 

  80. Mount DB. Fluid and Electrolyte Disturbances. In: Longo DL et al., editors. Harrison’s Principles of Internal Medicine, 18th ed. Boston: McGraw-Hill Medical; 2011. p. 341–359.

  81. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med. 2007;356(20):2064–72.

    Article  PubMed  CAS  Google Scholar 

  82. Mori T, Katayama Y, Kawamata T, Hirayama T. Improved efficiency of hypervolemic therapy with inhibition of natriuresis by fludrocortisone in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 1999;91(6):947–52.

    Article  PubMed  CAS  Google Scholar 

  83. Wijdicks EF, Vermeulen M, van Brummelen P, van Gijn J. The effect of fludrocortisone acetate on plasma volume and natriuresis in patients with aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 1988;90(3):209–14.

    Article  PubMed  CAS  Google Scholar 

  84. Woo MH, Kale-Pradhan PB. Fludrocortisone in the treatment of subarachnoid hemorrhage-induced hyponatremia. Ann Pharmacother. 1997;31(5):637–9.

    PubMed  CAS  Google Scholar 

  85. Katayama Y, Haraoka J, Hirabayashi H, et al. A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(8):2373–5.

    Article  PubMed  CAS  Google Scholar 

  86. Moro N, Katayama Y, Kojima J, Mori T, Kawamata T. Prophylactic management of excessive natriuresis with hydrocortisone for efficient hypervolemic therapy after subarachnoid hemorrhage. Stroke. 2003;34(12):2807–11.

    Article  PubMed  CAS  Google Scholar 

  87. Ogden AT, Mayer SA, Connolly ES Jr. Hyperosmolar agents in neurosurgical practice: the evolving role of hypertonic saline. Neurosurgery. 2005;57(2):207–15.

    Article  PubMed  Google Scholar 

  88. Steele A, Gowrishankar M, Abrahamson S, et al. Postoperative hyponatremia despite near-isotonic saline infusion: a phenomenon of desalination. Ann Intern Med. 1997;126(1):20–5.

    Article  PubMed  CAS  Google Scholar 

  89. Robertson GL. Vaptans for the treatment of hyponatremia. Nat Rev Endocrinol. 2011;7:151–61.

    Article  PubMed  CAS  Google Scholar 

  90. Porzio P, Halberthal M, Bohn D, Halperin ML. Treatment of acute hyponatremia: ensuring the excretion of a predictable amount of electrolyte-free water. Crit Care Med. 2000;28(6):1905–10.

    Article  PubMed  CAS  Google Scholar 

  91. Pokaharel M, Block CA. Dysnatremia in the ICU. Curr Opin Crit Care. 2011;17(6):581–93.

    Article  PubMed  Google Scholar 

  92. Torres AC, Wickham EP, Biskobing DM. Tolvaptan for the management of syndrome of inappropriate antidiuretic hormone secretion: lessons learned in titration of dose. Endocr Pract. 2011;17(4):e97–100.

    Article  PubMed  Google Scholar 

  93. Berl T, Quittnat-Pelletier F, Verbalis JG, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21(4):705–12.

    Article  PubMed  CAS  Google Scholar 

  94. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.

    Article  PubMed  CAS  Google Scholar 

  95. Graziani G, Cucchiari D, Aroldi A, et al. Syndrome of inappropriate secretion of antidiuretic hormone in traumatic brain injury: when tolvaptan becomes a life saving drug. J Neurol Neurosurg Psychiatry. 2012;83(5):510–2.

    Article  PubMed  Google Scholar 

  96. Potts MB, DeGiacomo AF, Deragopian L, Blevins LS Jr. Use of Intravenous conivaptan in neurosurgical patients with hyponatremia from syndrome of inappropriate antidiuretic hormone secretion. Neurosurgery. 2011;69:268–73.

    Article  PubMed  Google Scholar 

  97. Schrier RW, Masoumi A, Elhassan E. Role of vasopressin and vasopressin receptor antagonists in type I cardiorenal syndrome. Blood Purif. 2009;27(1):28–32.

    Article  PubMed  CAS  Google Scholar 

  98. Fraser JF, Stieg PE. Hyponatremia in the neurosurgical patient: epidemiology, pathophysiology, diagnosis, and management. Neurosurgery. 2006;59(2):222–9; discussion 222–9.

    Article  PubMed  Google Scholar 

  99. Braley LM, Adler GK, Mortensen RM, et al. Dose effect of adrenocorticotropin on aldosterone and cortisol biosynthesis in cultured bovine adrenal glomerulosa cells: in vitro correlate of hyperreninemic hypoaldosteronism. Endocrinology. 1992;131(1):187–94.

    Article  PubMed  CAS  Google Scholar 

  100. Zhang Y, Mircheff AK, Hensley CB, et al. Rapid redistribution and inhibition of renal sodium transporters during acute pressure natriuresis. Am J Physiol. 1996;270(6 Pt 2):F1004–14.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No authors have any conflicts of interest or financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Kirkman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkman, M.A., Albert, A.F., Ibrahim, A. et al. Hyponatremia and Brain Injury: Historical and Contemporary Perspectives. Neurocrit Care 18, 406–416 (2013). https://doi.org/10.1007/s12028-012-9805-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-012-9805-y

Keywords

Navigation