Skip to main content

Advertisement

Log in

Ceramide inhibits PKCθ by regulating its phosphorylation and translocation to lipid rafts in Jurkat cells

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Protein kinase C theta (PKCθ) is a novel, calcium-independent member of the PKC family of kinases that was identified as a central player in T cell signaling and proliferation. Upon T cell activation by antigen-presenting cells, PKCθ gets phosphorylated and activated prior to its translocation to the immunological synapse where it couples with downstream effectors. PKCθ may be regulated by ceramide, a crucial sphingolipid that is known to promote differentiation, growth arrest, and apoptosis. To further investigate the mechanism, we stimulated human Jurkat T cells with either PMA or anti-CD3/anti-CD28 antibodies following induction of ceramide accumulation by adding exogenous ceramide, bacterial sphingomyelinase, or Fas ligation. Our results suggest that ceramide regulates the PKCθ pathway through preventing its critical threonine 538 (Thr538) phosphorylation and subsequent activation, thereby inhibiting the kinase’s translocation to lipid rafts. Moreover, this inhibition is not likely to be a generic effect of ceramide on membrane reorganization. Other lipids, namely dihydroceramide, palmitate, and sphingosine, did not produce similar effects on PKCθ. Addition of the phosphatase inhibitors okadaic acid and calyculin A reversed the inhibition exerted by ceramide, and this suggests involvement of a ceramide-activated protein phosphatase. Such previously undescribed mechanism of regulation of PKCθ raises the possibility that ceramide, or one of its derivatives, and may prove valuable in novel therapeutic approaches for disorders involving autoimmunity or excessive inflammation—where PKCθ plays a critical role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baier G, Telford D, Giampa L, Coggeshall KM, Baier-Bitterlich G, Isakov N, et al. Molecular cloning and characterization of PKC theta, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells. J Biol Chem. 1993;268(7):4997–5004.

    CAS  PubMed  Google Scholar 

  2. Altman A, Villalba M. Protein kinase C-theta (PKC theta): a key enzyme in T cell life and death. J Biochem. 2002;132(6):841–6.

    Article  CAS  PubMed  Google Scholar 

  3. Monks CR, Kupfer H, Tamir I, Barlow A, Kupfer A. Selective modulation of protein kinase C-theta during T-cell activation. Nature. 1997;385(6611):83–6. doi:10.1038/385083a0.

    Article  CAS  PubMed  Google Scholar 

  4. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395(6697):82–6. doi:10.1038/25764.

    Article  CAS  PubMed  Google Scholar 

  5. Yang D, Miller RA. Cluster formation by protein kinase Ctheta during murine T cell activation: effect of age. Cell Immunol. 1999;195(1):28–36. doi:10.1006/cimm.1999.1517.

    Article  CAS  PubMed  Google Scholar 

  6. Bi K, Tanaka Y, Coudronniere N, Sugie K, Hong S, van Stipdonk MJ, et al. Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol. 2001;2(6):556–63. doi:10.1038/88765.

    Article  CAS  PubMed  Google Scholar 

  7. Bi K, Altman A. Membrane lipid microdomains and the role of PKCtheta in T cell activation. Semin Immunol. 2001;13(2):139–46. doi:10.1006/smim.2000.0305.

    Article  CAS  PubMed  Google Scholar 

  8. Hayashi K, Altman A. Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res. 2007;55(6):537–44. doi:10.1016/j.phrs.2007.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villalba M, Coudronniere N, Deckert M, Teixeiro E, Mas P, Altman A. A novel functional interaction between Vav and PKCtheta is required for TCR-induced T cell activation. Immunity. 2000;12(2):151–60. doi:10.1016/S1074-7613(00)80168-5.

    Article  CAS  PubMed  Google Scholar 

  10. Villalba M, Bi K, Hu J, Altman Y, Bushway P, Reits E, et al. Translocation of PKC[theta] in T cells is mediated by a nonconventional, PI3-K- and Vav-dependent pathway, but does not absolutely require phospholipase C. J Cell Biol. 2002;157(2):253–63. doi:10.1083/jcb.200201097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Isakov N, Altman A. PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors. Front Immunol. 2012;3:273. doi:10.3389/fimmu.2012.00273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kong KF, Yokosuka T, Canonigo-Balancio AJ, Isakov N, Saito T, Altman A. A motif in the V3 domain of the kinase PKC-theta determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat Immunol. 2011;12(11):1105–12. doi:10.1038/ni.2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baier-Bitterlich G, Uberall F, Bauer B, Fresser F, Wachter H, Grunicke H, et al. Protein kinase C-theta isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes. Mol Cell Biol. 1996;16(4):1842–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coudronniere N, Villalba M, Englund N, Altman A. NF-kappa B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta. Proc Natl Acad Sci USA. 2000;97(7):3394–9. doi:10.1073/pnas.060028097.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rajasekaran K, Chu H, Kumar P, Xiao Y, Tinguely M, Samarakoon A, et al. Transforming growth factor-beta-activated kinase 1 regulates natural killer cell-mediated cytotoxicity and cytokine production. J Biol Chem. 2011;286(36):31213–24. doi:10.1074/jbc.M111.261917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaide O, Favier B, Legler DF, Bonnet D, Brissoni B, Valitutti S, et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat Immunol. 2002;3(9):836–43. doi:10.1038/ni830.

    Article  CAS  PubMed  Google Scholar 

  17. Pfeifhofer C, Kofler K, Gruber T, Tabrizi NG, Lutz C, Maly K, et al. Protein kinase C theta affects Ca2 + mobilization and NFAT cell activation in primary mouse T cells. J Exp Med. 2003;197(11):1525–35. doi:10.1084/jem.20020234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun Z, Arendt CW, Ellmeier W, Schaeffer EM, Sunshine MJ, Gandhi L, et al. PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature. 2000;404(6776):402–7. doi:10.1038/35006090.

    Article  CAS  PubMed  Google Scholar 

  19. Wang D, Matsumoto R, You Y, Che T, Lin XY, Gaffen SL, et al. CD3/CD28 costimulation-induced NF-kappaB activation is mediated by recruitment of protein kinase C-theta, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1. Mol Cell Biol. 2004;24(1):164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dybkaer K, Iqbal J, Zhou G, Geng H, Xiao L, Schmitz A, et al. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genom. 2007;8:230. doi:10.1186/1471-2164-8-230.

    Article  CAS  Google Scholar 

  21. Liu Y, Dong W, Chen L, Xiang R, Xiao H, De G, et al. BCL10 mediates lipopolysaccharide/toll-like receptor-4 signaling through interaction with Pellino2. J Biol Chem. 2004;279(36):37436–44. doi:10.1074/jbc.M400241200.

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto R, Wang D, Blonska M, Li H, Kobayashi M, Pappu B, et al. Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity. 2005;23(6):575–85. doi:10.1016/j.immuni.2005.10.007.

    Article  CAS  PubMed  Google Scholar 

  23. Gaide O, Martinon F, Micheau O, Bonnet D, Thome M, Tschopp J. Carma1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-kappaB activation. FEBS Lett. 2001;496(2–3):121–7. doi:10.1016/S0014-5793(01)02414-0.

    Article  CAS  PubMed  Google Scholar 

  24. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14(3):289–301. doi:10.1016/S1097-2765(04)00236-9.

    Article  CAS  PubMed  Google Scholar 

  25. Eitelhuber AC, Warth S, Schimmack G, Duwel M, Hadian K, Demski K, et al. Dephosphorylation of Carma1 by PP2A negatively regulates T-cell activation. EMBO J. 2011;30(3):594–605. doi:10.1038/emboj.2010.331.

    Article  CAS  PubMed  Google Scholar 

  26. So T, Soroosh P, Eun SY, Altman A, Croft M. Antigen-independent signalosome of CARMA1, PKCtheta, and TNF receptor-associated factor 2 (TRAF2) determines NF-kappaB signaling in T cells. Proc Natl Acad Sci USA. 2011;108(7):2903–8. doi:10.1073/pnas.1008765108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zanin-Zhorov A, Dustin ML, Blazar BR. PKC-theta function at the immunological synapse: prospects for therapeutic targeting. Trends Immunol. 2011;32(8):358–63. doi:10.1016/j.it.2011.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Madaro L, Pelle A, Nicoletti C, Crupi A, Marrocco V, Bossi G, et al. PKC theta ablation improves healing in a mouse model of muscular dystrophy. PLoS ONE. 2012;7(2):e31515. doi:10.1371/journal.pone.0031515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bronk CC, Yu XZ, Beg AA. Targeting PKCtheta in alloreactivity and graft-versus-host-disease: unanswered questions and therapeutic potential. Front Immunol. 2012;3:259. doi:10.3389/fimmu.2012.00259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altman A, Kong KF. PKCtheta: a new target for selective immunosuppression. Expert Rev Clin Immunol. 2012;8(3):205–8. doi:10.1586/eci.12.8.

    Article  CAS  PubMed  Google Scholar 

  31. Chuang HC, Lan JL, Chen DY, Yang CY, Chen YM, Li JP, et al. The kinase GLK controls autoimmunity and NF-kappaB signaling by activating the kinase PKC-theta in T cells. Nat Immunol. 2011;12(11):1113–8. doi:10.1038/ni.2121.

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Chuang HC, Li JP, Tan TH. Regulation of PKC-theta function by phosphorylation in T cell receptor signaling. Front Immunol. 2012;3:197. doi:10.3389/fimmu.2012.00197.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Y, Witte S, Liu YC, Doyle M, Elly C, Altman A. Regulation of protein kinase Ctheta function during T cell activation by Lck-mediated tyrosine phosphorylation. J Biol Chem. 2000;275(5):3603–9.

    Article  CAS  PubMed  Google Scholar 

  34. Thuille N, Heit I, Fresser F, Krumbock N, Bauer B, Leuthaeusser S, et al. Critical role of novel Thr-219 autophosphorylation for the cellular function of PKCtheta in T lymphocytes. EMBO J. 2005;24(22):3869–80. doi:10.1038/sj.emboj.7600856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Czerwinski R, Aulabaugh A, Greco RM, Olland S, Malakian K, Wolfrom S, et al. Characterization of protein kinase C theta activation loop autophosphorylation and the kinase domain catalytic mechanism. Biochemistry. 2005;44(28):9563–73. doi:10.1021/bi050608q.

    Article  CAS  PubMed  Google Scholar 

  36. Lee JY, Choi AY, Oh YT, Choe W, Yeo EJ, Ha J, et al. AMP-activated protein kinase mediates T cell activation-induced expression of FasL and COX-2 via protein kinase C theta-dependent pathway in human Jurkat T leukemia cells. Cell Signal. 2012;24(6):1195–207. doi:10.1016/j.cellsig.2012.01.015.

    Article  CAS  PubMed  Google Scholar 

  37. Chen YM, Chuang HC, Lin WC, Tsai CY, Wu CW, Gong NR, et al. GLK overexpression in T cells as a novel biomarker in rheumatoid arthritis. Arthritis Rheum. 2013;. doi:10.1002/art.38067.

    Google Scholar 

  38. Sparatore B, Passalacqua M, Pedrazzi M, Ledda S, Patrone M, Gaggero D, et al. Role of the kinase activation loop on protein kinase C theta activity and intracellular localisation. FEBS Lett. 2003;554(1–2):35–40. doi:10.1016/S0014-5793(03)01073-1.

    Article  CAS  PubMed  Google Scholar 

  39. Abboushi N, El-Hed A, El-Assaad W, Kozhaya L, El-Sabban ME, Bazarbachi A, et al. Ceramide inhibits IL-2 production by preventing protein kinase C-dependent NF-kappaB activation: possible role in protein kinase Ctheta regulation. J Immunol. 2004;173(5):3193–200. doi:10.4049/jimmunol.173.5.3193.

    Article  CAS  PubMed  Google Scholar 

  40. Obeid LM, Hannun YA. Ceramide: a stress signal and mediator of growth suppression and apoptosis. J Cell Biochem. 1995;58(2):191–8. doi:10.1002/jcb.240580208.

    Article  CAS  PubMed  Google Scholar 

  41. Pushkareva M, Obeid LM, Hannun YA. Ceramide: an endogenous regulator of apoptosis and growth suppression. Immunol Today. 1995;16(6):294–7. doi:10.1016/0167-5699(95)80184-7.

    Article  CAS  PubMed  Google Scholar 

  42. Jayadev S, Liu B, Bielawska AE, Lee JY, Nazaire F, Pushkareva M, et al. Role for ceramide in cell cycle arrest. J Biol Chem. 1995;270(5):2047–52.

    Article  CAS  PubMed  Google Scholar 

  43. Dbaibo GS, Pushkareva MY, Jayadev S, Schwarz JK, Horowitz JM, Obeid LM, et al. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci USA. 1995;92(5):1347–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274(5294):1855–9.

    Article  CAS  PubMed  Google Scholar 

  45. Dbaibo GS, Obeid LM, Hannun YA. Tumor necrosis factor-alpha (TNF-alpha) signal transduction through ceramide. Dissociation of growth inhibitory effects of TNF-alpha from activation of nuclear factor-kappa B. J Biol Chem. 1993;268(24):17762–6.

    CAS  PubMed  Google Scholar 

  46. Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, et al. Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett. 2001;503(1):7–12. doi:10.1016/S0014-5793(01)02625-4.

    Article  CAS  PubMed  Google Scholar 

  47. Westwick JK, Bielawska AE, Dbaibo G, Hannun YA, Brenner DA. Ceramide activates the stress-activated protein kinases. J Biol Chem. 1995;270(39):22689–92.

    Article  CAS  PubMed  Google Scholar 

  48. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996;380(6569):75–9. doi:10.1038/380075a0.

    Article  CAS  PubMed  Google Scholar 

  49. Tepper CG, Jayadev S, Liu B, Bielawska A, Wolff R, Yonehara S, et al. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci USA. 1995;92(18):8443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yount GL, Levine KS, Kuriyama H, Haas-Kogan DA, Israel MA. Fas (APO-1/CD95) signaling pathway is intact in radioresistant human glioma cells. Cancer Res. 1999;59(6):1362–5.

    CAS  PubMed  Google Scholar 

  51. Grullich C, Sullards MC, Fuks Z, Merrill AH Jr, Kolesnick R. CD95(Fas/APO-1) signals ceramide generation independent of the effector stage of apoptosis. J Biol Chem. 2000;275(12):8650–6.

    Article  CAS  PubMed  Google Scholar 

  52. Sanvicens N, Cotter TG. Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem. 2006;98(5):1432–44. doi:10.1111/j.1471-4159.2006.03977.x.

    Article  CAS  PubMed  Google Scholar 

  53. France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M. Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson’s disease. J Neurochem. 1997;69(4):1612–21.

    Article  CAS  PubMed  Google Scholar 

  54. Li X, Becker KA, Zhang Y. Ceramide in redox signaling and cardiovascular diseases. Cell Physiol Biochem. 2010;26(1):41–8. doi:10.1159/000315104.

    Article  PubMed  CAS  Google Scholar 

  55. Lang F, Gulbins E, Lang PA, Zappulla D, Foller M. Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem. 2010;26(1):21–8. doi:10.1159/000315102.

    Article  CAS  PubMed  Google Scholar 

  56. Petrache I, Natarajan V, Zhen L, Medler TR, Richter AT, Cho C, et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med. 2005;11(5):491–8. doi:10.1038/nm1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997;272(34):21388–95.

    Article  CAS  PubMed  Google Scholar 

  58. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997;272(17):11369–77.

    Article  CAS  PubMed  Google Scholar 

  59. Andrieu-Abadie N, Gouaze V, Salvayre R, Levade T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med. 2001;31(6):717–28. doi:10.1016/S0891-5849(01)00655-4.

    Article  CAS  PubMed  Google Scholar 

  60. Kanj SS, Dandashi N, El-Hed A, Harik H, Maalouf M, Kozhaya L, et al. Ceramide regulates SR protein phosphorylation during adenoviral infection. Virology. 2006;345(1):280–9. doi:10.1016/j.virol.2005.09.060.

    Article  CAS  PubMed  Google Scholar 

  61. Gamard CJ, Dbaibo GS, Liu B, Obeid LM, Hannun YA. Selective involvement of ceramide in cytokine-induced apoptosis. Ceramide inhibits phorbol ester activation of nuclear factor kappaB. J Biol Chem. 1997;272(26):16474–81.

    Article  CAS  PubMed  Google Scholar 

  62. Chen CY, Faller DV. Selective inhibition of protein kinase C isozymes by Fas ligation. J Biol Chem. 1999;274(22):15320–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article  CAS  PubMed  Google Scholar 

  64. Preiss J, Loomis CR, Bishop WR, Stein R, Niedel JE, Bell RM. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986;261(19):8597–600.

    CAS  PubMed  Google Scholar 

  65. Phong MC, Gutwein P, Kadel S, Hexel K, Altevogt P, Linderkamp O, et al. Molecular mechanisms of L-selectin-induced co-localization in rafts and shedding [corrected]. Biochem Biophys Res Commun. 2003;300(2):563–9. doi:10.1016/S0006-291X(02)02886-3.

    Article  CAS  PubMed  Google Scholar 

  66. Sawai H, Okazaki T, Takeda Y, Tashima M, Sawada H, Okuma M, et al. Ceramide-induced translocation of protein kinase C-delta and -epsilon to the cytosol. Implications in apoptosis. J Biol Chem. 1997;272(4):2452–8.

    Article  CAS  PubMed  Google Scholar 

  67. Signorelli P, Luberto C, Hannun YA. Ceramide inhibition of NF-kappaB activation involves reverse translocation of classical protein kinase C (PKC) isoenzymes: requirement for kinase activity and carboxyl-terminal phosphorylation of PKC for the ceramide response. FASEB J. 2001;15(13):2401–14. doi:10.1096/fj.01-0244com.

    Article  CAS  PubMed  Google Scholar 

  68. Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L, et al. Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem. 1994;269(30):19200–2.

    CAS  PubMed  Google Scholar 

  69. Lee JY, Hannun YA, Obeid LM. Ceramide inactivates cellular protein kinase Calpha. J Biol Chem. 1996;271(22):13169–74.

    Article  CAS  PubMed  Google Scholar 

  70. Burack WR, Lee KH, Holdorf AD, Dustin ML, Shaw AS. Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J Immunol. 2002;169(6):2837–41.

    Article  CAS  PubMed  Google Scholar 

  71. Liu Y, Graham C, Li A, Fisher RJ, Shaw S. Phosphorylation of the protein kinase C-theta activation loop and hydrophobic motif regulates its kinase activity, but only activation loop phosphorylation is critical to in vivo nuclear-factor-kappaB induction. Biochem J. 2002;361(Pt 2):255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takagi Y, Du J, Ma XY, Nakashima I, Nagase F. Phorbol 12-myristate 13-acetate protects Jurkat cells from methylglyoxal-induced apoptosis by preventing c-Jun N-terminal kinase-mediated leakage of cytochrome c in an extracellular signal-regulated kinase-dependent manner. Mol Pharmacol. 2004;65(3):778–87. doi:10.1124/mol.65.3.778.

    Article  CAS  PubMed  Google Scholar 

  73. Ogretmen B, Pettus BJ, Rossi MJ, Wood R, Usta J, Szulc Z, et al. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem. 2002;277(15):12960–9. doi:10.1074/jbc.M110699200.

    Article  CAS  PubMed  Google Scholar 

  74. Chalfant CE, Ogretmen B, Galadari S, Kroesen BJ, Pettus BJ, Hannun YA. FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem. 2001;276(48):44848–55. doi:10.1074/jbc.M106291200.

    Article  CAS  PubMed  Google Scholar 

  75. Ikenouchi J, Hirata M, Yonemura S, Umeda M. Sphingomyelin clustering is essential for the formation of microvilli. J Cell Sci. 2013;126(Pt 16):3585–92. doi:10.1242/jcs.122325.

    Article  CAS  PubMed  Google Scholar 

  76. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72. doi:10.1038/42408.

    Article  CAS  PubMed  Google Scholar 

  77. Janes PW, Ley SC, Magee AI. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol. 1999;147(2):447–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saito T, Yokosuka T, Hashimoto-Tane A. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett. 2010;584(24):4865–71. doi:10.1016/j.febslet.2010.11.036.

    Article  CAS  PubMed  Google Scholar 

  79. Chmura SJ, Nodzenski E, Crane MA, Virudachalam S, Hallahan DE, Weichselbaum RR, et al. Cross-talk between ceramide and PKC activity in the control of apoptosis in WEHI-231. Adv Exp Med Biol. 1996;406:39–55.

    Article  CAS  PubMed  Google Scholar 

  80. Johns LD, Sarr T, Ranges GE. Inhibition of ceramide pathway does not affect ability of TNF-alpha to activate nuclear factor-kappa B. J Immunol. 1994;152(12):5877–82.

    CAS  PubMed  Google Scholar 

  81. Venable ME, Bielawska A, Obeid LM. Ceramide inhibits phospholipase D in a cell-free system. J Biol Chem. 1996;271(40):24800–5.

    Article  CAS  PubMed  Google Scholar 

  82. Jin Y, Knudsen E, Wang L, Bryceson Y, Damaj B, Gessani S, et al. Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood. 2003;101(12):4909–15. doi:10.1182/blood-2002-09-2962.

    Article  CAS  PubMed  Google Scholar 

  83. Werlen G, Jacinto E, Xia Y, Karin M. Calcineurin preferentially synergizes with PKC-theta to activate JNK and IL-2 promoter in T lymphocytes. EMBO J. 1998;17(11):3101–11. doi:10.1093/emboj/17.11.3101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. London E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem. 2004;279(11):9997–10004. doi:10.1074/jbc.M309992200.

    Article  CAS  PubMed  Google Scholar 

  85. Yu C, Alterman M, Dobrowsky RT. Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. J Lipid Res. 2005;46(8):1678–91. doi:10.1194/jlr.M500060-JLR200.

    Article  CAS  PubMed  Google Scholar 

  86. Toman RE, Movsesyan V, Murthy SK, Milstien S, Spiegel S, Faden AI. Ceramide-induced cell death in primary neuronal cultures: upregulation of ceramide levels during neuronal apoptosis. J Neurosci Res. 2002;68(3):323–30. doi:10.1002/jnr.10190.

    Article  CAS  PubMed  Google Scholar 

  87. Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, et al. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med. 1994;180(4):1547–52.

    Article  CAS  PubMed  Google Scholar 

  88. Cifone MG, Roncaioli P, De Maria R, Camarda G, Santoni A, Ruberti G, et al. Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J. 1995;14(23):5859–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gulbins E, Bissonnette R, Mahboubi A, Martin S, Nishioka W, Brunner T, et al. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity. 1995;2(4):341–51.

    Article  CAS  PubMed  Google Scholar 

  90. Paris F, Grassme H, Cremesti A, Zager J, Fong Y, Haimovitz-Friedman A, et al. Natural ceramide reverses Fas resistance of acid sphingomyelinase(−/−) hepatocytes. J Biol Chem. 2001;276(11):8297–305. doi:10.1074/jbc.M008732200.

    Article  CAS  PubMed  Google Scholar 

  91. Grassme H, Cremesti A, Kolesnick R, Gulbins E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene. 2003;22(35):5457–70. doi:10.1038/sj.onc.1206540.

    Article  CAS  PubMed  Google Scholar 

  92. Grassme H, Schwarz H, Gulbins E. Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun. 2001;284(4):1016–30. doi:10.1006/bbrc.2001.5045.

    Article  CAS  PubMed  Google Scholar 

  93. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem. 1991;266(22):14486–90.

    CAS  PubMed  Google Scholar 

  94. Merrill AH Jr, van Echten G, Wang E, Sandhoff K. Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem. 1993;268(36):27299–306.

    CAS  PubMed  Google Scholar 

  95. Merrill AH Jr, Wang E, Vales TR, Smith ER, Schroeder JJ, Menaldino DS, et al. Fumonisin toxicity and sphingolipid biosynthesis. Adv Exp Med Biol. 1996;392:297–306.

    Article  CAS  PubMed  Google Scholar 

  96. Cremesti A, Paris F, Grassme H, Holler N, Tschopp J, Fuks Z, et al. Ceramide enables fas to cap and kill. J Biol Chem. 2001;276(26):23954–61. doi:10.1074/jbc.M101866200.

    Article  CAS  PubMed  Google Scholar 

  97. Cremesti AE, Goni FM, Kolesnick R. Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett. 2002;531(1):47–53. doi:10.1016/S0014-5793(02)03489-0.

    Article  CAS  PubMed  Google Scholar 

  98. Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene. 2003;22(45):7070–7. doi:10.1038/sj.onc.1207146.

    Article  CAS  PubMed  Google Scholar 

  99. Grassme H, Jendrossek V, Riehle A, von Kurthy G, Berger J, Schwarz H, et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med. 2003;9(3):322–30. doi:10.1038/nm823.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta. 2009;1788(1):178–83. doi:10.1016/j.bbamem.2008.07.030.

    Article  CAS  PubMed  Google Scholar 

  101. Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999;24(5):186–91. doi:10.1016/S0968-0004(99)01375-4.

    Article  CAS  PubMed  Google Scholar 

  102. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem. 1993;268(21):15523–30.

    CAS  PubMed  Google Scholar 

  103. Chalfant CE, Kishikawa K, Mumby MC, Kamibayashi C, Bielawska A, Hannun YA. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem. 1999;274(29):20313–7.

    Article  CAS  PubMed  Google Scholar 

  104. Zolnierowicz S. Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem Pharmacol. 2000;60(8):1225–35. doi:10.1016/S0006-2952(00)00424-X.

    Article  CAS  PubMed  Google Scholar 

  105. Wu Y, Song P, Xu J, Zhang M, Zou MH. Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J Biol Chem. 2007;282(13):9777–88. doi:10.1074/jbc.M608310200.

    Article  CAS  PubMed  Google Scholar 

  106. Park S, Scheffler TL, Rossie SS, Gerrard DE. AMPK activity is regulated by calcium-mediated protein phosphatase 2A activity. Cell Calcium. 2013;53(3):217–23. doi:10.1016/j.ceca.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  107. Magnaudeix A, Wilson CM, Page G, Bauvy C, Codogno P, Leveque P, et al. PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins. Neurobiol Aging. 2013;34(3):770–90. doi:10.1016/j.neurobiolaging.2012.06.026.

    Article  CAS  PubMed  Google Scholar 

  108. Wang T, Yu Q, Chen J, Deng B, Qian L, Le Y. PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response. PLoS One. 2010;5(10). doi:10.1371/journal.pone.0013096.

  109. Yan L, Mieulet V, Burgess D, Findlay GM, Sully K, Procter J, et al. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol Cell. 2010;37(5):633–42. doi:10.1016/j.molcel.2010.01.031.

    Article  CAS  PubMed  Google Scholar 

  110. Yan L, Lamb RF. Signalling by amino acid nutrients. Biochem Soc Trans. 2011;39(2):443–5. doi:10.1042/BST0390443.

    Article  CAS  PubMed  Google Scholar 

  111. Becker KP, Kitatani K, Idkowiak-Baldys J, Bielawski J, Hannun YA. Selective inhibition of juxtanuclear translocation of protein kinase C betaII by a negative feedback mechanism involving ceramide formed from the salvage pathway. J Biol Chem. 2005;280(4):2606–12. doi:10.1074/jbc.M409066200.

    Article  CAS  PubMed  Google Scholar 

  112. Kitatani K, Idkowiak-Baldys J, Hannun YA. Mechanism of inhibition of sequestration of protein kinase C alpha/betaII by ceramide. Roles of ceramide-activated protein phosphatases and phosphorylation/dephosphorylation of protein kinase C alpha/betaII on threonine 638/641. J Biol Chem. 2007;282(28):20647–56. doi:10.1074/jbc.M609162200.

    Article  CAS  PubMed  Google Scholar 

  113. Gao X, Lowry PR, Zhou X, Depry C, Wei Z, Wong GW, et al. PI3 K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc Natl Acad Sci USA. 2011;108(35):14509–14. doi:10.1073/pnas.1019386108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, et al. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol. 2008;4(9):538–47. doi:10.1038/nchembio.103.

    Article  CAS  PubMed  Google Scholar 

  115. Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys. 2003;419(2):101–9. doi:10.1016/j.abb.2003.08.020.

    Article  CAS  PubMed  Google Scholar 

  116. Powell DJ, Hajduch E, Kular G, Hundal HS. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol. 2003;23(21):7794–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hajduch E, Turban S, Le Liepvre X, Le Lay S, Lipina C, Dimopoulos N, et al. Targeting of PKCzeta and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide. Biochem J. 2008;410(2):369–79. doi:10.1042/BJ20070936.

    Article  CAS  PubMed  Google Scholar 

  118. Tavano R, Gri G, Molon B, Marinari B, Rudd CE, Tuosto L, et al. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol. 2004;173(9):5392–7. doi:10.1038/ncb1492.

    Article  CAS  PubMed  Google Scholar 

  119. Hofinger E, Sticht H. Multiple modes of interaction between Lck and CD28. J Immunol. 2005;174(7):3839–40 (author reply 40).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Dbaibo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Rouba Hage-Sleiman and Asmaa B. Hamze have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hage-Sleiman, R., Hamze, A.B., El-Hed, A.F. et al. Ceramide inhibits PKCθ by regulating its phosphorylation and translocation to lipid rafts in Jurkat cells. Immunol Res 64, 869–886 (2016). https://doi.org/10.1007/s12026-016-8787-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8787-9

Keywords

Navigation