Skip to main content
Log in

Involvement of ATF3 in the negative regulation of iNOS expression and NO production in activated macrophages

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Macrophage-associated nitric oxide (NO) production plays a crucial role in the pathogenesis of tissue damage. However, negative factors that regulate NO production remains poorly understood despite its significance of NO homeostasis. Here, we show that activating transcription factor 3 (ATF3), a transcriptional regulator of cellular stress responses, was strongly induced in activated macrophages and its depletion resulted in pronounced enhancement of inducible nitric oxide synthase (iNOS) gene expression and subsequently the induction of high levels of NO production. In response to lipopolysaccharide (LPS) and IFN-γ, ATF3 inhibited transcriptional activity of NF-κB by interacting with the N-terminal (1–200 amino acids) of p65 and was bound to the NF-κB promoter, leading to suppression of iNOS gene expression. In addition, inhibitory effects of ATF3 on iNOS and NO secretion were suppressed by inhibitor of casein kinase II (CK2) activity or its knockdown. Moreover, the levels of ATF3 were highly elevated in established cecal ligation and puncture or LPS-injected mice, a model of endotoxemia. ATF3 is also elevated in peritoneal macrophages. Collectively, our findings suggest that ATF3 regulates NO homeostasis by associating with NF-κB component, leading to the repression of its transcriptional activity upon inflammatory signals and points to its potential relevance for the control of cell injuries mediated by NO during macrophage activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.

    Article  CAS  PubMed  Google Scholar 

  2. Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 1997;99(12):2818–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907–16.

    Article  CAS  PubMed  Google Scholar 

  4. Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, Renshaw SA, et al. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog. 2013;9(12):e1003789.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Qidwai T, Jamal F. Inducible nitric oxide synthase (iNOS) gene polymorphism and disease prevalence. Scand J Immunol. 2010;72(5):375–87.

    Article  CAS  PubMed  Google Scholar 

  6. Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev. 2005;57(2):217–52.

    Article  CAS  PubMed  Google Scholar 

  7. Sass G, Koerber K, Bang R, Guehring H, Tiegs G. Inducible nitric oxide synthase is critical for immune-mediated liver injury in mice. J Clin Invest. 2001;107(4):439–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Song BJ, Abdelmegeed MA, Henderson LE, Yoo SH, Wan J, Purohit V, et al. Increased nitroxidative stress promotes mitochondrial dysfunction in alcoholic and nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2013;2013:781050.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chavarria C, Souza JM. Oxidation and nitration of alpha-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys. 2013;533(1–2):25–32.

    Article  CAS  PubMed  Google Scholar 

  10. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004;84(3):731–65.

    Article  CAS  PubMed  Google Scholar 

  11. Kleinert H, Schwarz PM, Forstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol Chem. 2003;384(10–11):1343–64.

    CAS  PubMed  Google Scholar 

  12. Rao KM. Molecular mechanisms regulating iNOS expression in various cell types. J Toxicol Environ Health B Crit Rev. 2000;3(1):27–58.

    Article  CAS  PubMed  Google Scholar 

  13. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004;75(6):639–53.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson MR, Xu D, Williams BR. ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl). 2009;87(11):1053–60.

    Article  CAS  Google Scholar 

  15. Wolford CC, McConoughey SJ, Jalgaonkar SP, Leon M, Merchant AS, Dominick JL, et al. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest. 2013;123(7):2893–906.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lu D, Chen J, Hai T. The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem J. 2007;401(2):559–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature. 2006;441(7090):173–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 2010;15(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  19. Lee S, Kwak JH, Park D, Pyo S. Protective effect of kobophenol A on nitric oxide-induced cell apoptosis in human osteoblast-like MG-63 cells: involvement of JNK, NF-κB and AP-1 pathways. Int Immunopharmacol. 2011;11:1251–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kaji H, Tai A, Matsushita K, Kanzaki H, Yamamoto I. Activation of murine peritoneal macrophages by water-soluble extracts of bursaphelenchus xylophilus, a pine wood nematode. Biosci Biotechnol Biochem. 2006;70:203–10.

    Article  CAS  PubMed  Google Scholar 

  21. Kim K, Pyo S, Um SH. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology. 2012;55(6):1727–37.

    Article  CAS  PubMed  Google Scholar 

  22. Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest. 2009;119(10):2868–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.

    Article  CAS  PubMed  Google Scholar 

  24. Tomohisa KJ, Mireille D, Alexander H, Michael K. CK2 Is a C-Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Mol Cell. 2003;12(4):829–39.

    Article  Google Scholar 

  25. Lai P, Cheng C, Lin H, Tseng T, Chen H, Chen S. ATF3 protects against LPS-induced inflammation in mice via inhibiting HMGB1 expression. Evid Based Complement Alternat Med. 2013;2013:716481.

    PubMed Central  PubMed  Google Scholar 

  26. Kim EY, Shin HY, Kim JY, Kim DG, Choi YM, Kwon HK, et al. ATF3 plays a key role in Kdo2-lipid A-induced TLR4-dependent gene expression via NF-kappaB activation. PLoS One. 2010;5(12):e14181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Brück J, et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med. 2011;18(1):128–34.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Khuu CH, Barrozo RM, Hai T, Weinstein SL. Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol Immunol. 2007;44(7):1598–605.

    Article  CAS  PubMed  Google Scholar 

  29. Takii R, Inouye S, Fujimoto M, Nakamura T, Shinkawa T, Prakasam R, et al. Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J Immunol. 2010;184(2):1041–8.

    Article  CAS  PubMed  Google Scholar 

  30. Martinez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med. 2011;51(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  31. Hamdi M, Popeijus HE, Carlotti F, Janssen JM, van der Burgt C, Cornelissen-Steijger P, et al. ATF3 and Fra1 have opposite functions in JNK- and ERK-dependent DNA damage responses. DNA Repair (Amst). 2008;7(3):487–96.

    Article  CAS  Google Scholar 

  32. Kim JY, Song EH, Lee S, Lim JH, Choi JS, Koh IU, Song J, Kim WH. The induction of STAT1 gene by activating transcription factor 3 contributes to pancreatic beta-cell apoptosis and its dysfunction in streptozotocin-treated mice. Cell Signal. 2010;22(11):1669–80.

    Article  CAS  PubMed  Google Scholar 

  33. Nishiya T, Uehara T, Edamatsu H, Kaziro Y, Itoh H, Nomura Y. Activation of Stat1 and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-gamma-induced MAPK activation that is mediated by p21ras. FEBS Lett. 1997;408(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  34. Cho SJ, Huh JE, Song J, Rhee DK, Pyo S. Ikaros negatively regulates inducible nitric oxide synthase expression in macrophages: involvement of Ikaros phosphorylation by casein kinase 2. Cell Mol Life Sci. 2008;65(20):3290–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Hee Um or Suhkneung Pyo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, D.H., Kim, KH., Byeon, H.E. et al. Involvement of ATF3 in the negative regulation of iNOS expression and NO production in activated macrophages. Immunol Res 62, 35–45 (2015). https://doi.org/10.1007/s12026-015-8633-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8633-5

Keywords

Navigation