Skip to main content

Advertisement

Log in

Sudden infant death syndrome: exposure to cigarette smoke leads to hypomethylation upstream of the growth factor independent 1 (GFI1) gene promoter

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Purpose

Smoking during pregnancy has long been known as an important risk factor for sudden infant death syndrome (SIDS). However, the precise relationship between the smoking behavior of the mother and SIDS still remains unclear. In this study, the influence of prenatal smoking exposure on the childrens’ DNA methylation state of a CpG island located upstream of the promoter of the growth factor independent 1 (GFI1) gene was analyzed.

Methods

Blood samples of well-defined SIDS cases with non-smoking mothers (n = 11), SIDS cases with smoking mothers during pregnancy (n = 11), and non-SIDS cases (n = 6) were obtained from a previous study and methylation states were determined by bisulfite sequencing.

Results

Significant hypomethylation was observed in this CpG island in SIDS cases with cigarette smoke exposure compared to non-exposed cases. The strongest effect in this CpG island was observed for 49 CpG sites located within a transcription factor binding site. Coding for a transcriptional repressor, GFI1 plays an important role in various developmental processes. Alterations in the GFI1 expression might be linked to various conditions that are known to be associated with SIDS, such as dysregulated hematopoiesis and excessive inflammatory response.

Conclusion

Data obtained in this study show that analysis of methylation states in cases of sudden infant death syndrome might provide a further important piece of knowledge toward understanding SIDS, and should be investigated in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krous HF, Beckwith JB, Byard RW, Rognum TO, Bajanowski T, Corey T, et al. Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics. 2004;114:234–8.

    Article  PubMed  Google Scholar 

  2. Bergman AB. Synthesis. In: Bergman AB, Beckwith JB, Ray CG, editors. Sudden infant death syndrome. Seattle: University of Washington Press; 1970. p. 210–1.

    Google Scholar 

  3. Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonatol. 1994;65:194–7.

    Article  CAS  Google Scholar 

  4. Malloy MH, Hoffman HJ. Prematurity, sudden infant death syndrome, and age of death. Pediatrics. 1995;96:464–71.

    CAS  PubMed  Google Scholar 

  5. Blair PS, Platt MW, Smith IJ, Fleming PJ. Sudden infant death syndrome and sleeping position in pre-term and low birth weight infants: an opportunity for targeted intervention. Arch Dis Child. 2006;91:101–6.

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell EA, Stewart AW. Gender and the sudden infant death syndrome. New Zealand Cot Death Study Group. Acta Paediatr. 1997;86:854–6.

    Article  CAS  PubMed  Google Scholar 

  7. Fleming PJ, Gilbert R, Azaz Y, Berry PJ, Rudd PT, Stewart A, et al. Interaction between bedding and sleeping position in the sudden infant death syndrome: a population based case-control. BMJ. 1990;301:85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schlaud M, Kleemann WJ, Poets CF, Sens B. Smoking during pregnancy and poor antenatal care: two major preventable risk factors for sudden infant death syndrome. Int J Epidemiol. 1996;25:959–65.

    Article  CAS  PubMed  Google Scholar 

  9. Scragg RK, Mitchell EA. Side sleeping position and bed sharing in the sudden infant death syndrome. Ann Med. 1998;30:345–9.

    Article  CAS  PubMed  Google Scholar 

  10. Vennemann MM, Findeisen M, Butterfass-Bahloul T, Jorch G, Brinkmann B, Köpcke W, et al. Modifiable risk factors for SIDS in Germany: results of GeSID. Acta Paediatr. 2005;94:655–60.

    Article  PubMed  Google Scholar 

  11. Darnall RA, Harris MB, Gill WH, Hoffman JM, Brown JW, Niblock MM. Inhibition of serotonergic neurons in the nucleus paragigantocellularis lateralis fragments sleep and decreases rapid eye movement sleep in the piglet: implications for sudden infant death syndrome. J Neurosci. 2005;25:8322–32.

    Article  CAS  PubMed  Google Scholar 

  12. Tryba AK, Pena F, Ramirez JM. Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. J Neurosci. 2006;26:2623–34.

    Article  CAS  PubMed  Google Scholar 

  13. Läer K, Vennemann M, Rothamel T, Klintschar M. Association between polymorphisms in the P2RY1 and SSTR2 genes and sudden infant death syndrome. Int J Legal Med. 2013;127:1087–91.

    Article  PubMed  Google Scholar 

  14. Läer K, Dork T, Vennemann M, Rothamel T, Klintschar M. Polymorphisms in genes of respiratory control and sudden infant death syndrome. Int J Legal Med. 2015;129:977–84.

    Article  PubMed  Google Scholar 

  15. Van Norstrand DW, Tester DJ, Ackerman MJ. Overrepresentation of the proarrhythmic, sudden death predisposing sodium channel polymorphism S1103Y in a population- based cohort of African-American sudden infant death syndrome. Heart Rhythm. 2008;5:712–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ferrante L, Opdal SH, Vege A, Rognum TO. TNF-alpha promoter polymorphisms in sudden infant death. Hum Immunol. 2008;69:368–73.

    Article  CAS  PubMed  Google Scholar 

  17. Opdal SH, Vege A, Saugstad OD, Rognum TO. Is partial deletion of the complement C4 genes associated with sudden infant death? Eur J Pediatr. 1994;153:287–90.

    Article  CAS  PubMed  Google Scholar 

  18. Schneider PM, Wendler C, Riepert T, Braun L, Schacker U, Horn M, et al. Possible association of sudden infant death with partial complement C4 deficiency revealed by post-mortem DNA typing of HLA class II and III genes. Eur J Pediatr. 1989;149:170–4.

    Article  CAS  PubMed  Google Scholar 

  19. Summers AM, Summers CW, Drucker DB, Hajeer AH, Barson A, Hutchinson IV. Association of IL-10 genotype with sudden infant death syndrome. Hum Immunol. 2000;61:1270–3.

    Article  CAS  PubMed  Google Scholar 

  20. Opdal SH, Rognum TO. The sudden infant death syndrome gene: does it exist? Pediatrics. 2004;114:e506–12.

    Article  PubMed  Google Scholar 

  21. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Article  CAS  PubMed  Google Scholar 

  23. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21–32.

    Article  CAS  PubMed  Google Scholar 

  24. Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol. 2009;21:359–66.

    Article  CAS  PubMed  Google Scholar 

  25. Wolf SF, Migeon BR. Studies of X chromosome DNA methylation in normal human cells. Nature. 1982;295:667–71.

    Article  CAS  PubMed  Google Scholar 

  26. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature. 1998;395:89–93.

    Article  CAS  PubMed  Google Scholar 

  27. Singal R, Ginder GD. DNA methylation. Blood. 1999;93:4059–70.

    CAS  PubMed  Google Scholar 

  28. Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993;3:226–31.

    Article  CAS  PubMed  Google Scholar 

  29. Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM. DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics. 2011;6:828–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suter M, Aagaard K. What changes in DNA methylation take place in individuals exposed to maternal smoking in utero? Epigenomics. 2012;4:115–8.

    Article  CAS  PubMed  Google Scholar 

  31. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H. Tobacco-smoking-related differential DNA methylation: 27 K discovery and replication. Am J Hum Genet. 2011;88:450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450 K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120:1425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zweidler-Mckay PA, Grimes HL, Flubacher MM, Tsichlis PN. Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol Cell Biol. 1996;16:4024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duan Z, Zarebski A, Montoya-Durango D, Grimes HL, Horwitz M. Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol Cell Biol. 2005;25:10338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khandanpour C, Kosan C, Gaudreau MC, Duhrsen U, Hebert J, Zeng H, et al. Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease. Stem Cells. 2011;29:376–85.

    Article  CAS  PubMed  Google Scholar 

  36. Jafar-Nejad H, Bellen HJ. Gfi/Pag-3/senseless zinc finger proteins: a unifying theme? Mol Cell Biol. 2004;24:8803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Möröy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol. 2011;23:368–78.

    Article  PubMed  Google Scholar 

  38. Findeisen M, Vennemann M, Brinkmann B, Ortmann C, Röse I, Köpcke W, et al. German study on sudden infant death (GeSID): design, epidemiological and pathological profile. Int J Legal Med. 2004;118:163–9.

    Article  CAS  PubMed  Google Scholar 

  39. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180:462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ivorra C, Fraga MF, Bayon GF, Fernandez AF, Garcia-Vicent C, Chaves F, et al. DNA methylation patterns in newborns exposed to tobacco in utero. J Transl Med. 2015;13:25.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, et al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2014;122:1147–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nguyen LP, Bradfield CA. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol. 2008;21:102–16.

    Article  CAS  PubMed  Google Scholar 

  43. Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer. 2011;129:773–9.

    Article  CAS  PubMed  Google Scholar 

  44. Teslovich TM, Musunuru K, Smith AV, Edmondson AW, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marucci A, Cozzolino F, Dimatteo C, Monti M, Pucci P, Trischitta V, et al. Role of GALNT2 in the modulation of ENPP1 expression, and insulin signaling and action: GALNT2: a novel modulator of insulin signaling. Biochim Biophys Acta. 2013;1833:1388–95.

    Article  CAS  PubMed  Google Scholar 

  46. Marucci A, di Mauro L, Menzaghi C, Prudente S, Mangiacotti D, Fini G, et al. GALNT2 expression is reduced in patients with type 2 diabetes: possible role of hyperglycemia. PLoS ONE. 2013;8:e70159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Joubert BR, Haberg SE, Bell DA, Nilsen RM, Vollset SE, Midttun O, et al. Cancer Epidemiol Biomarkers Prev. 2014;23:1007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Phelan JD, Shroyer NF, Cook T, Gebelein B, Grimes HL. Gfi1—cells & circuits: unraveling transcriptional networks of development and disease. Curr Opin Hematol. 2010;17:300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Meer LT, Jansen JH, van der Reijden BA. Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia. 2010;24:1834–43.

    Article  PubMed  Google Scholar 

  50. Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34:308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang M, Hu Z, Chang W, Ou D, Zhou J, Zhang Y. The growth factor independence-1 (Gfi1) is overexpressed in chronic myelogenous leukemia. Acta Haematol. 2010;123:1–5.

    Article  CAS  PubMed  Google Scholar 

  52. Duan Z, Horwitz M. Targets of the transcriptional repressor oncoprotein Gfi-1. Proc Natl Acad Sci USA. 2003;100:5932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Phillipson EA, Sullivan CE. Arousal: the forgotten response to respiratory stimuli. Am Rev Respir Dis. 1978;118:807–9.

    CAS  PubMed  Google Scholar 

  54. McCulloch K, Brouillette RT, Guzzetta AJ, Hunt CE. Arousal responses in near- miss sudden infant death syndrome and in normal infants. J Pediatr. 1982;101:911–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all forensic pathologists at the Institute of Legal medicine for thorough post-mortem examination, Athina Vidaki for helpful discussions on bisulfite sequencing and involved parents for consenting to molecular analyses.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Marielle Vennemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12024_2016_9812_MOESM1_ESM.pdf

Primer sequences designed for bisulfite sequencing of a 2600 bp region upstream of the GFI1 promoter. Differentially methylated positions are given as Y (C or T) and R (G or A) (PDF 41 kb)

12024_2016_9812_MOESM2_ESM.pdf

Mean relative methylation (MRM) values with standard deviation (SD) for 148 successfully analyzed CpG sites and all SIDS cases. MRM and SD for CpG sites of the transcription factor binding site (CpG 58-112) for non-SIDS cases. Original data on all samples and all CpG sites are available on request (PDF 96 kb)

12024_2016_9812_MOESM3_ESM.pdf

Bisulfite converted sequence of the analyzed area upstream of the GFI1 promoter region. PCR primers were designed for 8 individual reactions to cover a total of 2600 bp containing 170 CpG positions (arrows). The area of the transcription factor binding site is highlighted in red. The following 10 CpG positions were not included in the analysis due to poor sequencing quality or incomplete bisulfite conversion: 80, 135, 136, 137, 138, 139, 140, 141, 169, 170. All CpG sites located within primer binding sites were also excluded from analyses (PDF 66 kb)

12024_2016_9812_MOESM4_ESM.pdf

Supplementary Material—Fig. S2 Extreme example of differential methylation between a SIDS case not exposed (A) and exposed (B) to cigarette smoke. Asterisks indicate CpG positions 10, 11, and 13 in GFI1 fragment 2 in reverse direction. In the sequence example B a slight background with elevated peaks is visible. This does not affect the calculation of the relative methylation state because relevant positons are not affected (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwender, K., Holtkötter, H., Johann, K.S. et al. Sudden infant death syndrome: exposure to cigarette smoke leads to hypomethylation upstream of the growth factor independent 1 (GFI1) gene promoter. Forensic Sci Med Pathol 12, 399–406 (2016). https://doi.org/10.1007/s12024-016-9812-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-016-9812-y

Keywords

Navigation