Skip to main content

Advertisement

Log in

Efficient Spiking Neural Network Model of Pattern Motion Selectivity in Visual Cortex

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2(2), 284–299.

    Article  CAS  Google Scholar 

  • Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300(5892), 523–525.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, D. C., & Goyal, M. S. (2008). Velocity computation in the primate visual system. Nature Reviews Neuroscience, 9(9), 686–695. doi:10.1038/Nrn2472.

    Article  CAS  PubMed  Google Scholar 

  • Browning, N. A., Grossberg, S., & Mingolla, E. (2009a). Cortical dynamics of navigation and steering in natural scenes: motion-based object segmentation, heading, and obstacle avoidance. Neural Networks, 22(10), 1383–1398. doi:10.1016/j.neunet.2009.05.007.

    Article  Google Scholar 

  • Browning, N. A., Grossberg, S., & Mingolla, E. (2009b). A neural model of how the brain computes heading from optic flow in realistic scenes. Cognitive Psychology, 59(4), 320–356. doi:10.1016/j.cogpsych.2009.07.002.

    Article  PubMed  Google Scholar 

  • Burke, D., & Wenderoth, P. (1993). The effect of interactions between one-dimensional component gratings on 2-dimensional motion perception. Vision Research, 33(3), 343–350. doi:10.1016/0042-6989(93)90090-J.

    Article  CAS  PubMed  Google Scholar 

  • Chey, J., Grossberg, S., & Mingolla, E. (1997). Neural dynamics of motion grouping: from aperture ambiguity to object speed and direction. Journal of the Optical Society of America a-Optics Image Science and Vision, 14(10), 2570–2594. doi:10.1364/Josaa.14.002570.

    Article  Google Scholar 

  • Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli—a general basis for studying non-fourier motion perception. Journal of the Optical Society of America a-Optics Image Science and Vision, 5(11), 1986–2007. doi:10.1364/Josaa.5.001986.

    Article  CAS  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems (Computational neuroscience). Cambridge: Massachusetts Institute of Technology Press.

    Google Scholar 

  • DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. Journal of Neurophysiology, 69(4), 1118–1135.

    CAS  PubMed  Google Scholar 

  • Ferrera, V. P., & Wilson, H. R. (1990). Perceived direction of moving two-dimensional patterns. Vision Research, 30(2), 273–287.

    Article  CAS  PubMed  Google Scholar 

  • Fidjeland, A. K., & Shanahan, M. P. (2010). Accelerated simulation of spiking neural networks using GPUs. In Neural Networks (IJCNN), The 2010 International Joint Conference on, 18–23 July 2010 (pp. 1–8). doi:10.1109/IJCNN.2010.5596678.

  • Freeman, W. T., & Adelson, E. H. (1991). The design and use of steerable filters. In IEEE Pattern Analysis and Machine Intelligence (Vol. 13, pp. 891–906).

  • Grossberg, S., & Pilly, P. K. (2008). Temporal dynamics of decision-making during motion perception in the visual cortex. Vision Research, 48(12), 1345–1373. doi:10.1016/j.visres.2008.02.019.

    Article  PubMed  Google Scholar 

  • Hohl, S. S., Chaisanguanthum, K. S., & Lisberger, S. G. (2013). Sensory population decoding for visually guided movements. Neuron, 79(1), 167–179. doi:10.1016/j.neuron.2013.05.026.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Indiveri, G., Chicca, E., & Douglas, R. (2006). A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks, 17(1), 211–221. doi:10.1109/Tnn.2005.860850.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572. doi:10.1109/Tnn.2003.820440.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070. doi:10.1109/Tnn.2004.832719.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting (Computational neuroscience). Cambridge: MIT Press.

    Google Scholar 

  • Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics of neuronal groups. Cerebral Cortex, 14(8), 933–944. doi:10.1093/cercor/bhh053.

    Article  PubMed  Google Scholar 

  • Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., & Painkras, E. SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor. In IEEE International Joint Conference on Neural Networks, 2008 (pp. 2849–2856).

  • Koch, C. (1999). Biophysics of computation: Information processing in single neurons (Computational neuroscience). New York: Oxford University Press.

    Google Scholar 

  • Layton, O. W., Mingolla, E., & Browning, N. A. (2012). A motion pooling model of visually guided navigation explains human behavior in the presence of independently moving objects. Journal of Vision, 12(1), doi:10.1167/12.1.20.

  • Livingstone, M. S., & Conway, B. R. (2007). Contrast affects speed tuning, space-time slant, and receptive-field organization of simple cells in macaque V1. Journal of Neurophysiology, 97(1), 849–857. doi:10.1152/jn.00762.2006.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu, Z. L., & Sperling, G. (1995). Attention-generated apparent motion. Nature, 377(6546), 237–239. doi:10.1038/377237a0.

    Article  CAS  PubMed  Google Scholar 

  • Majaj, N. J., Carandini, M., & Movshon, J. A. (2007). Motion integration by neurons in macaque MT is local, not global. Journal of Neuroscience, 27(2), 366–370. doi:10.1523/JNEUROSCI.3183-06.2007.

    Article  PubMed Central  PubMed  Google Scholar 

  • Merolla, P. A., Arthur, J. V., Shi, B. E., & Boahen, K. A. (2007). Expandable networks for neuromorphic chips. IEEE Transactions on Circuits and Systems I-Regular Papers, 54(2), 301–311. doi:10.1109/Tcsi.2006.887474.

    Article  Google Scholar 

  • Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience, 16(23), 7733–7741.

    CAS  PubMed  Google Scholar 

  • Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The analysis of moving visual patterns (Pattern recognition mechanisms). New York: Springer.

    Google Scholar 

  • Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., & Veidenbaum, A. V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22(5–6), 791–800. doi:10.1016/j.neunet.2009.06.028.

    Article  PubMed  Google Scholar 

  • Nishida, S. (2011). Advancement of motion psychophysics: review 2001–2010. Journal of Vision, 11(5), Artn 11. doi:10.1167/11.5.11.

    Article  Google Scholar 

  • Pack, C. C., Berezovskii, V. K., & Born, R. T. (2001). Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature, 414(6866), 905–908. doi:10.1038/414905a.

    Article  CAS  PubMed  Google Scholar 

  • Perrone, J. A. (2012). A neural-based code for computing image velocity from small sets of middle temporal (MT/V5) neuron inputs. Journal of Vision, 12(8), doi:10.1167/12.8.1.

  • Perrone, J. A., & Thiele, A. (2001). Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nature Neuroscience, 4(5), 526–532.

    CAS  PubMed  Google Scholar 

  • Perrone, J. A., & Thiele, A. (2002). A model of speed tuning in MT neurons. Vision Research, 42(8), 1035–1051.

    Article  PubMed  Google Scholar 

  • Priebe, N. J., Cassanello, C. R., & Lisberger, S. G. (2003). The neural representation of speed in macaque area MT/V5. Journal of Neuroscience, 23(13), 5650–5661.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Priebe, N. J., Lisberger, S. G., & Movshon, J. A. (2006). Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. Journal of Neuroscience, 26(11), 2941–2950. doi:10.1523/JNEUROSCI.3936-05.2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raudies, F., Mingolla, E., & Neumann, H. (2011). A model of motion transparency processing with local center-surround interactions and feedback. Neural Computation, 23(11), 2868–2914. doi:10.1162/NECO_a_00193.

    Article  PubMed  Google Scholar 

  • Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind in decision-making. Nature, 461(7261), 263–U141. doi:10.1038/Nature08275.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richert, M., Nageswaran, J. M., Dutt, N., & Krichmar, J. L. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers Neuroinformatics, 5, 19. doi:10.3389/fninf.2011.00019.

    Article  Google Scholar 

  • Rodman, H. R., & Albright, T. D. (1987). Coding of visual stimulus velocity in area Mt of the Macaque. Vision Research, 27(12), 2035–2048. doi:10.1016/0042-6989(87)90118-0.

    Article  CAS  PubMed  Google Scholar 

  • Rodman, H. R., & Albright, T. D. (1989). Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Experimental Brain Research, 75(1), 53–64.

    Article  CAS  PubMed  Google Scholar 

  • Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21), 9475–9489.

    CAS  PubMed  Google Scholar 

  • Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells analyze the motion of visual patterns. Nature Neuroscience, 9(11), 1421–1431. doi:10.1038/Nn1786.

    Article  CAS  PubMed  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4), 1916–1936.

    CAS  PubMed  Google Scholar 

  • Simoncelli, E. P., & Heeger, D. J. (1998). A model of neuronal responses in visual area MT. Vision Research, 38(5), 743–761. doi:10.1016/S0042-6989(97)00183-1.

    Article  CAS  PubMed  Google Scholar 

  • Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neurosciences, 27(3), 161–168. doi:10.1016/j.tins.2004.01.006.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. A., Majaj, N. J., & Movshon, J. A. (2005). Dynamics of motion signaling by neurons in macaque area MT. Nature Neuroscience, 8(2), 220–228. doi:10.1038/Nn1382.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasa, N., & Cruz-Albrecht, J. M. (2012). Neuromorphic adaptive plastic scalable electronics analog learning systems. IEEE Pulse, 3(1), 51–56. doi:10.1109/Mpul.2011.2175639.

    Article  PubMed  Google Scholar 

  • Thiele, A., Dobkins, K. R., & Albright, T. D. (2001). Neural correlates of chromatic motion perception. Neuron, 32(2), 351–358.

    Article  CAS  PubMed  Google Scholar 

  • van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America a-Optics Image Science and Vision, 2(2), 300–321.

    Article  Google Scholar 

  • Vogelstein, R. J., Mallik, U., Culurciello, E., Cauwenberghs, G., & Etienne-Cummings, R. (2007). A multichip neuromorphic system for spike-based visual information processing. Neural Computation, 19(9), 2281–2300. doi:10.1162/neco.2007.19.9.2281.

    Article  PubMed  Google Scholar 

  • Wilson, H. R., Ferrera, V. P., & Yo, C. (1992). A psychophysically motivated model for 2-dimensional motion perception. Visual Neuroscience, 9(1), 79–97.

    Article  CAS  PubMed  Google Scholar 

  • Yudanov, D., Shaaban, M., Melton, R., & Reznik, L. (2010). GPU-based simulation of spiking neural networks with real-time performance & high accuracy. In Neural Networks (IJCNN), The 2010 International Joint Conference on, 18–23 July 2010 (pp. 1–8). doi:10.1109/IJCNN.2010.5596334.

Download references

Acknowledgments

This work was supported by the Defense Advanced Research Projects Agency (DARPA) subcontract 801888-BS. We thank Jayram M. Nageswaran for his work developing the custom spiking neural network simulator. We also thank Michael Avery, Kris Carlson, and Steve Grossberg for valuable feedback and discussion on this project.

Conflict of Interest

The authors have no conflicts of interest with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Beyeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyeler, M., Richert, M., Dutt, N.D. et al. Efficient Spiking Neural Network Model of Pattern Motion Selectivity in Visual Cortex. Neuroinform 12, 435–454 (2014). https://doi.org/10.1007/s12021-014-9220-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-014-9220-y

Keywords

Navigation