Skip to main content
Log in

Structure-Based Neuron Retrieval Across Drosophila Brains

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Comparing local neural structures across large sets of examples is crucial when studying gene functions, and their effect in the Drosophila brain. The current practice of aligning brain volume data to a joint reference frame is based on the neuropil. However, even after alignment neurons exhibit residual location and shape variability that, together with image noise, hamper direct quantitative comparison and retrieval of similar structures on an intensity basis. In this paper, we propose and evaluate an image-based retrieval method for neurons, relying on local appearance, which can cope with spatial variability across the population. For an object of interest marked in a query case, the method ranks cases drawn from a large data set based on local neuron appearance in confocal microscopy data. The approach is based on capturing the orientation of neurons based on structure tensors and expanding this field via Gradient Vector Flow. During retrieval, the algorithm compares fields across cases, and calculates a corresponding ranking of most similar cases with regard to the local structure of interest. Experimental results demonstrate that the similarity measure and ranking mechanisms yield high precision and recall in realistic search scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Birngruber, E., Langs, G., Donner, R. (2009). matVTK - 3D visualization for MATLAB. The MIDAS Journal, pp. 1–8.

  • Brand, H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development (Cambridge, England), 118(2), 401–415.

    CAS  Google Scholar 

  • Briggman, K.L., & Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology, 16(5), 562–570.

    Article  CAS  PubMed  Google Scholar 

  • Bruckner, S., Šoltészová, V., Gröller, M.E., Hladůvka, J., Bühler, K., Yu, J., Dickson, B.J. (2009). BrainGazer - Visual queries for neurobiology research. IEEE Transactions on Visualization and Computer Graphics, 15, 1497–1504.

    Article  PubMed  Google Scholar 

  • Chigirev, D., & Bialek, W. (2004). Optimal manifold representation of data: an information theoretic approach. Advances in Neural Information Processing Systems, 16, 161.

    Google Scholar 

  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.

    Article  Google Scholar 

  • Dickson, B. (2012). Website of Dickson Group.

  • Dittrich, E. (2009). Automatic segmentation of retinal vessels and measurement of doppler flow velocity in optical coherence tomography data. Diploma thesis, Vienna University of Technology.

  • Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., Ayache, N. (2011). Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage, 55(3), 1073–1090.

    Article  PubMed  Google Scholar 

  • Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A. (1998). Multiscale vessel enhancement filtering. Medical image computing and computer-assisted intervention: MICCAI... International Conference on Medical Image Computing and Computer-Assisted Intervention, 1496, 130–137.

    Google Scholar 

  • Gillette, T.a., Brown, K.M., Ascoli, G.a. (2011). The DIADEM metric: comparing multiple reconstructions of the same neuron. Neuroinformatics, 9(2–3), 233–245.

    Article  PubMed  Google Scholar 

  • Hassouna, M.S., & Farag, A.a. (2009). Variational curve skeletons using gradient vector flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2257–2274.

    Article  PubMed  Google Scholar 

  • Jefferis, G.S.X.E., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Luo, L. (2007). Comprehensive maps of drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell, 128(6), 1187–1203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy, D.N., Hodge, S.M., Gao, Y., Frazier, J.a., Haselgrove, C. (2012). The internet brain volume database: a public resource for storage and retrieval of volumetric data. Neuroinformatics, 10(2), 129–140.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kimura, K.-I., Hachiya, T., Koganezawa, M., Tazawa, T., Yamamoto, D. (2008). Fruitless and doublesex coordinate to generate malespecific neurons that can initiate courtship. Neuron, 59(5), 759–769.

    Article  CAS  PubMed  Google Scholar 

  • Knutsson, H. (1989). Representing local structure using tensors. The 6th Scandinavian conference on image analysis (pp. 244–251).

  • Knutsson, H., Westin, C., Andersson, M. (2011). Representing local structure using tensors II. Image Analysis Lecture Notes in Computer Science, 6688, 545–556. http://link.springer.com/chapter/10.1007%2F978-3-642-21227-7_51

  • Masse, N.Y., Cachero, S., Ostrovsky, A.D., Jefferis, G.S.X.E. (2012). A mutual information approach to automate identification of neuronal clusters in Drosophila brain images. Frontiers in Neuroinformatics, 6, 21.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nicolaï, L.J.J., Ramaekers, A., Raemaekers, T., Drozdzecki, A., Mauss, A.S., Yan, J., Landgraf, M., Annaert, W., Hassan, B.A. (2010). Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20553–20558.

    Article  PubMed Central  PubMed  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  • Rohlfing, T., & Maurer, C.R. (2003). Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 7(1), 16–25.

    Article  Google Scholar 

  • Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R. (1998). 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2), 143–168.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, L., & Stockman, G. (2002). Computer vision. Texts in computer science. Prentice Hall.

  • Sokolowski, M.B. (2001). Drosophila: genetics meets behaviour. Nature Reviews Genetics, 2(11), 879–890.

    Article  CAS  PubMed  Google Scholar 

  • Stalling, D., Westerhoff, M., Hege, H.-C. (2005). Amira: a highly interactive system for visual data analysis.

  • Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirián, L., Dickson, B.J. (2005). Neural circuitry that governs Drosophila male courtship behavior. Cell, 121(5), 795–807.

    Article  CAS  PubMed  Google Scholar 

  • Tenenbaum, J.B., de Silva, V., Langford, J.C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science (New York, N.Y.), 290(5500), 2319–2323.

    Article  CAS  Google Scholar 

  • Verma, R., Khurd, P., Davatzikos, C. (2007). On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Transactions on Medical Imaging, 26(6), 772–778.

    Article  PubMed  Google Scholar 

  • Von Philipsborn, A.C., Liu, T., Yu, J.Y., Masser, C., Bidaye, S.S., Dickson, B.J. (2011). Neuronal control of Drosophila courtship song. Neuron, 69(3), 509–522.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., & Prince, J.L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 7(3), 359–369.

    Article  CAS  Google Scholar 

  • Yang, J., Gonzalez-Bellido, P.T., Peng, H. (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14, 93.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S.X.E., Dickson, B.J. (2010). Cellular organization of the neural circuit that drives Drosophila courtship behavior. Current Biology, 20(18), 1602–1614.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K. (1996). A constrained edit distance between unordered labeled trees. Algorithmica, 15(3), 205–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the European Union (257528, KHRESMOI, 330003 FABRIC, 318068 VISCERAL), the Austrian Sciences Fund (P 22578-B19, PULMARCH) the OeNB (14812, FETALMORPHO) and the FFG Headquarter Project ”Molecular Basis” (Grant number: 834223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Ganglberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganglberger, F., Schulze, F., Tirian, L. et al. Structure-Based Neuron Retrieval Across Drosophila Brains. Neuroinform 12, 423–434 (2014). https://doi.org/10.1007/s12021-014-9219-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-014-9219-4

Keywords

Navigation