Skip to main content
Log in

Dysregulated expression of long noncoding RNAs serves as diagnostic biomarkers of type 2 diabetes mellitus

  • Meta Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2019

This article has been updated

Abstract

Purpose

Long noncoding RNAs (LncRNAs) are widely investigated in various diseases as a novel type of biomarkers. We aimed to elucidate the diagnostic values of lncRNAs in patients with type 2 diabetes mellitus (T2DM).

Methods

We comprehensively searched PubMed, Web of Science, EMBASE, CBM, Scopus, and the Cochrane Library databases from the inception to 3 January 2019. Studies concerning the association between lncRNAs expression and diagnostic outcomes in type 2 diabetes mellitus patients were included. We employed pooled odds ratios (ORs) and 95% confidence intervals (CIs) to evaluate diagnostic parameters.

Results

Seven relevant studies were eligible in our study. The pooled results showed that lncRNAs performed the area under the curve (AUC) of 0.73 (95%Cl: 0.69–0.77), with sensitivity of 0.71 (95%Cl: 0.64–0.77) and specificity of 0.66 (95%Cl: 0.60–0.71) in discriminating type 2 diabetes from healthy controls. As for prediabetes, lncRNAs conducted AUC of 0.75 with 76% sensitivity and 64% specificity. Moreover, subgroup analysis based on expression levels of lncRNAs, sample sizes, and specimen of eligible studies were further performed.

Conclusions

This study indicates that lncRNAs may serve as promising indicators for diagnostic evaluation of T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 20 August 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. C.J. Nolan, P. Damm, M. Prentki, Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378(9786), 169–181 (2011). https://doi.org/10.1016/S0140-6736(11)60614-4

    Article  PubMed  Google Scholar 

  2. R.B. Prasad, L. Groop, Genetics of type 2 diabetes-pitfalls and possibilities. Genes 6(1), 87–123 (2015). https://doi.org/10.3390/genes6010087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Chawla, R. Chawla, S. Jaggi, Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J. Endocrinol. Metab. 20(4), 546–551 (2016). https://doi.org/10.4103/2230-8210.183480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Bonnefond, P. Froguel, Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 21(3), 357–368 (2015). https://doi.org/10.1016/j.cmet.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  5. C.P. Ponting, P.L. Oliver, W. Reik, Evolution and functions of long noncoding RNAs. Cell 136(4), 629–641 (2009). https://doi.org/10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  6. P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M.C. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells, R. Kodzius, K. Shimokawa, V.B. Bajic, S.E. Brenner, S. Batalov, A.R. Forrest, M. Zavolan, M.J. Davis, L.G. Wilming, V. Aidinis, J.E. Allen, A. Ambesi-Impiombato, R. Apweiler, R.N. Aturaliya, T.L. Bailey, M. Bansal, L. Baxter, K.W. Beisel, T. Bersano, H. Bono, A.M. Chalk, K.P. Chiu, V. Choudhary, A. Christoffels, D.R. Clutterbuck, M.L. Crowe, E. Dalla, B.P. Dalrymple, B. de Bono, G.Della. Gatta, D. di Bernardo, T. Down, P. Engstrom, M. Fagiolini, G. Faulkner, C.F. Fletcher, T. Fukushima, M. Furuno, S. Futaki, M. Gariboldi, P. Georgii-Hemming, T.R. Gingeras, T. Gojobori, R.E. Green, S. Gustincich, M. Harbers, Y. Hayashi, T.K. Hensch, N. Hirokawa, D. Hill, L. Huminiecki, M. Iacono, K. Ikeo, A. Iwama, T. Ishikawa, M. Jakt, A. Kanapin, M. Katoh, Y. Kawasawa, J. Kelso, H. Kitamura, H. Kitano, G. Kollias, S.P. Krishnan, A. Kruger, S.K. Kummerfeld, I.V. Kurochkin, L.F. Lareau, D. Lazarevic, L. Lipovich, J. Liu, S. Liuni, S. McWilliam, M.Madan. Babu, M. Madera, L. Marchionni, H. Matsuda, S. Matsuzawa, H. Miki, F. Mignone, S. Miyake, K. Morris, S. Mottagui-Tabar, N. Mulder, N. Nakano, H. Nakauchi, P. Ng, R. Nilsson, S. Nishiguchi, S. Nishikawa, F. Nori, O. Ohara, Y. Okazaki, V. Orlando, K.C. Pang, W.J. Pavan, G. Pavesi, G. Pesole, N. Petrovsky, S. Piazza, J. Reed, J.F. Reid, B.Z. Ring, M. Ringwald, B. Rost, Y. Ruan, S.L. Salzberg, A. Sandelin, C. Schneider, C. Schonbach, K. Sekiguchi, C.A. Semple, S. Seno, L. Sessa, Y. Sheng, Y. Shibata, H. Shimada, K. Shimada, D. Silva, B. Sinclair, S. Sperling, E. Stupka, K. Sugiura, R. Sultana, Y. Takenaka, K. Taki, K. Tammoja, S.L. Tan, S. Tang, M.S. Taylor, J. Tegner, S.A. Teichmann, H.R. Ueda, E. van Nimwegen, R. Verardo, C.L. Wei, K. Yagi, H. Yamanishi, E. Ueda, S. Zhu, A. Zimmer, W. Hide, C. Bult, S.M. Grimmond, R.D. Teasdale, E.T. Liu, V. Brusic, J. Quackenbush, C. Wahlestedt, J.S. Mattick, D.A. Hume, C. Kai, D. Sasaki, Y. Tomaru, S. Fukuda, M. Kanamori-Katayama, M. Suzuki, J. Aoki, T. Arakawa, J. Iida, K. Imamura, M. Itoh, T. Kato, H. Kawaji, N. Kawagashira, T. Kawashima, M. Kojima, S. Kondo, H. Konno, K. Nakano, N. Ninomiya, T. Nishio, M. Okada, C. Plessy, K. Shibata, T. Shiraki, S. Suzuki, M. Tagami, K. Waki, A. Watahiki, Y. Okamura-Oho, H. Suzuki, J. Kawai, F.Y. Hayashizaki,FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group, The transcriptional landscape of the mammalian genome. Science 309(5740), 1559–1563 (2005). https://doi.org/10.1126/science.1112014

    Article  CAS  PubMed  Google Scholar 

  7. C.J. Li, Y. Xiao, M. Yang, T. Su, X. Sun, Q. Guo, Y. Huang, X.H. Luo, Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J. Clin. Investig. 128(12), 5251–5266 (2018). https://doi.org/10.1172/jci99044

    Article  PubMed  PubMed Central  Google Scholar 

  8. A. Fatica, I. Bozzoni, Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15(1), 7–21 (2014). https://doi.org/10.1038/nrg3606

    Article  CAS  PubMed  Google Scholar 

  9. L. Li, T. Feng, Y. Lian, G. Zhang, A. Garen, X. Song, Role of human noncoding RNAs in the control of tumorigenesis. Proc. Natl. Acad. Sci. USA 106(31), 12956–12961 (2009). https://doi.org/10.1073/pnas.0906005106

    Article  PubMed  PubMed Central  Google Scholar 

  10. M. Huarte, The emerging role of lncRNAs in cancer. Nat. Med. 21(11), 1253–1261 (2015). https://doi.org/10.1038/nm.3981

    Article  CAS  PubMed  Google Scholar 

  11. R. Castro-Oropeza, J. Melendez-Zajgla, V. Maldonado, K. Vazquez-Santillan, The emerging role of lncRNAs in the regulation of cancer stem cells. Cell. Oncol. 41(6), 585–603 (2018). https://doi.org/10.1007/s13402-018-0406-4

    Article  Google Scholar 

  12. S.D. Feng, J.H. Yang, C.H. Yao, S.S. Yang, Z.M. Zhu, D. Wu, H.Y. Ling, L. Zhang, Potential regulatory mechanisms of lncRNA in diabetes and its complications. Biochem. Cell Biol. 95(3), 361–367 (2017). https://doi.org/10.1139/bcb-2016-0110

    Article  CAS  PubMed  Google Scholar 

  13. X. Sun, D. Wong, Long non-coding RNA-mediated regulation of glucose homeostasis and diabetes. Am. J. Cardiovasc. Dis. 6(2), 17–25 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Knoll, H.F. Lodish, L. Sun, Long non-coding RNAs as regulators of the endocrine system. Nat. Rev. Endocrinol. 11(3), 151–160 (2015). https://doi.org/10.1038/nrendo.2014.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J.P. Higgins, S.G. Thompson, Quantifying heterogeneity in a meta-analysis. Stat. Med. 21(11), 1539–1558 (2002). https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  16. M. Erfanian Omidvar, H. Ghaedi, F. Kazerouni, S. Kalbasi, M. Shanaki, G. Miraalamy, A. Zare, A. Rahimipour, Clinical significance of long noncoding RNA VIM-AS1 and CTBP1-AS2 expression in type 2 diabetes. J. Cell. Biochem., (2018). https://doi.org/10.1002/jcb.28206

  17. L. Saeidi, H. Ghaedi, M. Sadatamini, R. Vahabpour, A. Rahimipour, M. Shanaki, Z. Mansoori, Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol. Biol. Rep. (2018). https://doi.org/10.1007/s11033-018-4429-8

  18. Z. Mansoori, H. Ghaedi, M. Sadatamini, R. Vahabpour, A. Rahimipour, M. Shanaki, L. Saeidi, F. Kazerouni, Downregulation of long non-coding RNAs LINC00523 and LINC00994 in type 2 diabetes in an Iranian cohort. Mol. Biol. Rep. 45(5), 1227–1233 (2018). https://doi.org/10.1007/s11033-018-4276-7

    Article  CAS  PubMed  Google Scholar 

  19. L. Wang, N. Su, Y. Zhang, G. Wang, Clinical significance of serum lncRNA cancer susceptibility candidate 2 (CASC2) for chronic renal failure in patients with type 2 diabetes. Med. Sci. Monit. 24, 6079–6084 (2018). https://doi.org/10.12659/MSM.909510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Q. Yin, A. Wu, M. Liu, Plasma long non-coding RNA (lncRNA) GAS5 is a new biomarker for coronary artery disease. Med. Sci. Monit. 23, 6042–6048 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Carter, B. Miladinovic, A.A. Patel, L. Deland, S. Mastorides, N.A. Patel, Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin. 4, 102–107 (2015). https://doi.org/10.1016/j.bbacli.2015.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  22. X. Li, Z. Zhao, C. Gao, L. Rao, P. Hao, D. Jian, W. Li, H. Tang, M. Li, The diagnostic value of whole blood lncRNA ENST00000550337.1 for prediabetes and type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 125(6), 377–383 (2017). https://doi.org/10.1055/s-0043-100018

    Article  CAS  PubMed  Google Scholar 

  23. J.J. Deeks, P. Macaskill, L. Irwig, The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J. Clin. Epidemiol. 58(9), 882–893 (2005). https://doi.org/10.1016/j.jclinepi.2005.01.016

    Article  PubMed  Google Scholar 

  24. J.N. Utumatwishima, S.T. Chung, A.R. Bentley, M. Udahogora, A.E. Sumner, Reversing the tide—diagnosis and prevention of T2DM in populations of African descent. Nat. Rev. Endocrinol. 14(1), 45–56 (2018). https://doi.org/10.1038/nrendo.2017.127

    Article  PubMed  Google Scholar 

  25. C.Herder,B. Kowall, A.G. Tabak, W. Rathmann, The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia 57(1), 16–29 (2014). https://doi.org/10.1007/s00125-013-3061-3

    Article  CAS  PubMed  Google Scholar 

  26. L. Eliasson, J.L. Esguerra, Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol. 211(2), 273–284 (2014). https://doi.org/10.1111/apha.12285

    Article  CAS  Google Scholar 

  27. N. Goyal, D. Kesharwani, M. Datta, Lnc-ing non-coding RNAs with metabolism and diabetes: roles of lncRNAs. Cell. Mol. life Sci. 75(10), 1827–1837 (2018). https://doi.org/10.1007/s00018-018-2760-9

    Article  CAS  PubMed  Google Scholar 

  28. G.L. Ding, F.F. Wang, J. Shu, S. Tian, Y. Jiang, D. Zhang, N. Wang, Q. Luo, Y. Zhang, F. Jin, P.C. Leung, J.Z. Sheng, H.F. Huang, Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61(5), 1133–1142 (2012). https://doi.org/10.2337/db11-1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I. Moran, I. Akerman, M. van de Bunt, R. Xie, M. Benazra, T. Nammo, L. Arnes, N. Nakic, J. Garcia-Hurtado, S. Rodriguez-Segui, L. Pasquali, C. Sauty-Colace, A. Beucher, R. Scharfmann, J. van Arensbergen, P.R. Johnson, A. Berry, C. Lee, T. Harkins, V. Gmyr, F. Pattou, J. Kerr-Conte, L. Piemonti, T. Berney, N. Hanley, A.L. Gloyn, L. Sussel, L. Langman, K.L. Brayman, M. Sander, M.I. McCarthy, P. Ravassard, J. Ferrer, Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 16(4), 435–448 (2012). https://doi.org/10.1016/j.cmet.2012.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. X. Zhu, Y.B. Wu, J. Zhou, D.M. Kang, Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem. Biophys. Res. Commun. 469(2), 319–325 (2016). https://doi.org/10.1016/j.bbrc.2015.11.048

    Article  CAS  PubMed  Google Scholar 

  31. M.L. Alvarez, J.K. DiStefano, Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS ONE 6(4), e18671 (2011). https://doi.org/10.1371/journal.pone.0018671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J.Y. Liu, J. Yao, X.M. Li, Y.C. Song, X.Q. Wang, Y.J. Li, B. Yan, Q. Jiang, Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 5, e1506 (2014). https://doi.org/10.1038/cddis.2014.466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G.Z. Qiu, W. Tian, H.T. Fu, C.P. Li, B. Liu, Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Biochem. Biophys. Res. Commun. 471(1), 135–141 (2016). https://doi.org/10.1016/j.bbrc.2016.01.164

    Article  CAS  PubMed  Google Scholar 

Download references

Authors’ contributions

Study conception and design: Z.W.Y., Z.J. and C.L.L. Acquisition of data: Z.W.Y., Z.J., H.X. and C.L.L. Analysis of data: Z.W.Y., Z.J. Paper drafting: Z.W.Y., C.L.L. Critical appraisal of paper: C.L.L. All the authors have approved the final paper to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zheng, J., Hu, X. et al. Dysregulated expression of long noncoding RNAs serves as diagnostic biomarkers of type 2 diabetes mellitus. Endocrine 65, 494–503 (2019). https://doi.org/10.1007/s12020-019-02015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02015-7

Keywords

Navigation