Skip to main content
Log in

HCG-mediated activation of mTORC1 signaling plays a crucial role in steroidogenesis in human granulosa lutein cells

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Luteinizing hormone/human chorionic gonadotropin stimulates progesterone biosynthesis in the corpus luteum by activating cyclic adenosine monophosphate/protein kinase A cascade. Recent studies have shown that cyclic adenosine monophosphate-mediated activation of protein kinase A interacts with the mammalian target of rapamycin signaling pathways. Furthermore, the use of mammalian target of rapamycin inhibitors for immunosuppression in transplant patients has shown adverse effects in reproductive functions. This study examined whether the mammalian target of rapamycin pathway plays any role in luteinizing hormone-mediated regulation of progesterone production. Human granulosa lutein cells were isolated from follicular aspirates of women undergoing in vitro fertilization. Cells were cultured for 72 h and treated with human chorionic gonadotropin (50 ng/ml) for different time periods with or without pretreatment with mammalian target of rapamycin complex 1 inhibitor, rapamycin, (20 nM) for 1 h. Expression of steroidogenic enzymes, including steroidogenic acute regulatory protein, cholesterol side chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase type 1 messenger RNA, were examined by real-time polymerase chain reaction after 6 h of human chorionic gonadotropin treatment. Expressions of phospho-ribosomal protein S6 kinase and cholesterol side chain cleavage enzyme were analyzed after 15 min and 24 h of human chorionic gonadotropin treatment, respectively. Progesterone production was analyzed by an enzyme immunoassay kit after human chorionic gonadotropin (50 ng/ml) or forskolin (10 μM) treatment for 24 h. Treatment with human chorionic gonadotropin increased the expression of downstream targets of mammalian target of rapamycin complex 1, as well as cholesterol side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase type 1 and steroidogenic acute regulatory protein messenger RNAs. These increases were inhibited by rapamycin pretreatment. Increased progesterone production in response to treatment with human chorionic gonadotropin or forskolin was also blocked by rapamycin pretreatment. Our findings support a role for mammalian target of rapamycin complex 1 in regulating steroidogenesis in human granulosa lutein cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Azhar, M.R. Clark, K.M.J. Menon, Regulation of cyclic adenosine 3′, 5′-mono-phosphate dependent protein kinase of rat ovarian cells by luteinizing hormone and human chorionic gonadotropin. Endocr. Res. Commun. 3(2), 93–104 (1976)

    Article  CAS  PubMed  Google Scholar 

  2. M.R. Clark, K.M.J. Menon, Regulation of ovarian steroidogenesis. The disparity between 125I-labelled choriogonadotropin binding cyclic adenosine 3′,5′-monophosphate formation and progesterone synthesis in the rat ovary. Biochim. Biophys. Acta 444(1), 23–32 (1976)

    Article  CAS  PubMed  Google Scholar 

  3. M.T. Williams, J.M. Marsh, Estradiol inhibition of luteinizing hormone-stimulated progesterone synthesis in isolated bovine luteal cells. Endocrinology 103(5), 1611–1618 (1978). doi:10.1210/endo-103-5-1611

    Article  CAS  PubMed  Google Scholar 

  4. C. Stocco, C. Telleria, G. Gibori, The molecular control of corpus luteum formation, function, and regression. Endocr. Rev. 28(1), 117–149 (2007). doi:10.1210/er.2006-0022

    Article  CAS  PubMed  Google Scholar 

  5. J.T. Gwynne, J.F. Strauss 3rd, The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr. Rev. 3(3), 299–329 (1982). doi:10.1210/edrv-3-3-299

    Article  CAS  PubMed  Google Scholar 

  6. M.S. Brown, J.L. Goldstein, A receptor-mediated pathway for cholesterol homeostasis. Science 232(4746), 34–47 (1986)

    Article  CAS  PubMed  Google Scholar 

  7. B.J. Clark, D.M. Stocco, Expression of the steroidogenic acute regulatory (STAR) protein: a novel LH-induced mitochondrial protein required for the acute regulation of steroidogenesis in mouse Leydig tumor cells. Endocr. Res. 21(1–2), 243–257 (1995)

    Article  CAS  PubMed  Google Scholar 

  8. D. Lin, T. Sugawara, J.F. Strauss 3rd, B.J. Clark, D.M. Stocco, P. Saenger, A. Rogol, W.L. Miller, Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267(5205), 1828–1831 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. P.R. Manna, M.T. Dyson, D.M. Stocco, Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol. Hum. Reprod. 15(6), 321–333 (2009). doi:10.1093/molehr/gap025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D.K. Ghosh, W.R. Dunham, R.H. Sands, K.M.J. Menon, Regulation of cholesterol side-chain cleavage enzyme activity by gonadotropin in rat corpus luteum. Endocrinology 121(1), 21–27 (1987). doi:10.1210/endo-121-1-21

    Article  CAS  PubMed  Google Scholar 

  11. D.K. Ghosh, H. Peegel, W.R. Dunham, R.H. Sands, K.M.J. Menon, Modulation of progesterone synthesis and cytochrome P450 levels in rat luteal cells during human chorionic gonadotropin-induced desensitized state. Endocrinology 123(1), 514–522 (1988). doi:10.1210/endo-123-1-514

    Article  CAS  PubMed  Google Scholar 

  12. N. Yago, S. Ichii, Submitochondrial distribution of components of the steroid 11 beta-hydroxylase and cholesterol sidechain-cleaving enzyme systems in hog adrenal cortex. J. Biochem. 65(2), 215–224 (1969)

    CAS  PubMed  Google Scholar 

  13. B. Cheng, D.K. Hsu, T. Kimura, Utilization of intramitochondrial membrane cholesterol by cytochrome P-450-dependent cholesterol side-chain cleavage reaction in bovine adrenocortical mitochondria: steroidogenic and non-steroidogenic pools of cholesterol in the mitochondrial inner membranes. Mol. Cell. Endocrinol. 40(2-3), 233–243 (1985)

    Article  CAS  PubMed  Google Scholar 

  14. T. Kimura, ACTH stimulation on cholesterol side chain cleavage activity of adrenocortical mitochondria. Transfer of the stimulus from plasma membrane to mitochondria. Mol. Cell. Biochem. 36(2), 105–122 (1981)

    Article  CAS  PubMed  Google Scholar 

  15. G.J. Hickey, R.B. Oonk, P.F. Hall, J.S. Richards, Aromatase cytochrome P450 and cholesterol side-chain cleavage cytochrome P450 in corpora lutea of pregnant rats: diverse regulation by peptide and steroid hormones. Endocrinology 125(3), 1673–1682 (1989). doi:10.1210/endo-125-3-1673

    Article  CAS  PubMed  Google Scholar 

  16. J.S. Davis, Mechanisms of hormone action: luteinizing hormone receptors and second-messenger pathways. Curr. Opin. Obstet. Gynecol. 6(3), 254–261 (1994)

    Article  CAS  PubMed  Google Scholar 

  17. X. Hou, E.W. Arvisais, J.S. Davis, Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase. Endocrinology 151(6), 2846–2857 (2010). doi:10.1210/en.2009-1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Mejia, C. Waite, M. Ascoli, Activation of Gq/11 in the mouse corpus luteum is required for parturition. Mol. Endocrinol. 29(2), 238–246 (2015). doi:10.1210/me.2014-1324

    Article  PubMed  Google Scholar 

  19. U.M. Munshi, H. Peegel, K.M.J.Menon, Palmitoylation of the luteinizing hormone/human chorionic gonadotropin receptor regulates receptor interaction with the arrestin-mediated internalization pathway. Eur. J. Biochem. 268(6), 1631–1639 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. M. Hunzicker-Dunn, E.T. Maizels, FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell. Signal. 18(9), 1351–1359 (2006). doi:10.1016/j.cellsig.2006.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M.E. Hunzicker-Dunn, B. Lopez-Biladeau, N.C. Law, S.E. Fiedler, D.W. Carr, E.T. Maizels, PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc. Natl. Acad. Sci. U. S. A. 109(44), E2979–2988 (2012). doi:10.1073/pnas.1205661109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Das, E.T. Maizels, D. DeManno, E. St Clair, S.A. Adam, M. Hunzicker-Dunn, A stimulatory role of cyclic adenosine 3′,5′-monophosphate in follicle-stimulating hormone-activated mitogen-activated protein kinase signaling pathway in rat ovarian granulosa cells. Endocrinology 137(3), 967–974 (1996). doi:10.1210/endo.137.3.8603610

    CAS  PubMed  Google Scholar 

  23. H. Alam, E.T. Maizels, Y. Park, S. Ghaey, Z.J. Feiger, N.S. Chandel, M. Hunzicker-Dunn, Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J. Biol. Chem. 279(19), 19431–19440 (2004). doi:10.1074/jbc.M401235200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. P.P. Kayampilly, K.M.J. Menon, Follicle-stimulating hormone increases tuberin phosphorylation and mammalian target of rapamycin signaling through an extracellular signal-regulated kinase-dependent pathway in rat granulosa cells. Endocrinology 148(8), 3950–3957 (2007). doi:10.1210/en.2007-0202

    Article  CAS  PubMed  Google Scholar 

  25. M. Laplante, D.M. Sabatini, Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126(Pt 8), 1713–1719 (2013). doi:10.1242/jcs.125773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Laplante, D.M. Sabatini, mTOR signaling in growth control and disease. Cell 149(2), 274–293 (2012). doi:10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Laplante, D.M. Sabatini, mTOR signaling. Cold Spring Harb. Perspect. Biol. 4(2) (2012). doi: 10.1101/cshperspect.a011593

  28. M. Laplante, D.M. Sabatini, mTOR signaling at a glance. J. Cell Sci. 122(Pt 20), 3589–3594 (2009). doi:10.1242/jcs.051011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. D.D. Sarbassov, S.M. Ali, D.M. Sabatini, Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17(6), 596–603 (2005). doi:10.1016/j.ceb.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  30. E. Jacinto, R. Loewith, A. Schmidt, S. Lin, M.A. Ruegg, A. Hall, M.N. Hall, Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6(11), 1122–1128 (2004). doi:10.1038/ncb1183

    Article  CAS  PubMed  Google Scholar 

  31. L. Gu, L. Xie, C. Zuo, Z. Ma, Y. Zhang, Y. Zhu, J. Gao, Targeting mTOR/p70S6K/glycolysis signaling pathway restores glucocorticoid sensitivity to 4E-BP1 null Burkitt Lymphoma. BMC Cancer 15, 529 (2015). doi:10.1186/s12885-015-1535-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. Y.J. Chen, P.W. Hsiao, M.T. Lee, J.I. Mason, F.C. Ke, J.J. Hwang, Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. J. Endocrinol. 192(2), 405–419 (2007). doi:10.1677/JOE-06-0076

    Article  CAS  PubMed  Google Scholar 

  33. A.K. Nair, H. Peegel, K.M.J. Menon, The role of luteinizing hormone/human chorionic gonadotropin receptor-specific mRNA binding protein in regulating receptor expression in human ovarian granulosa cells. J. Clin. Endocrinol. Metab. 91(6), 2239–2243 (2006). doi:10.1210/jc.2005-2739

    Article  CAS  PubMed  Google Scholar 

  34. W. Strober, Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix 3, Appendix 3B (2001). doi: 10.1002/0471142735.ima03bs21

  35. L. Wang, A.K. Nair, K.M.J. Menon, Ribonucleic acid binding protein-mediated regulation of luteinizing hormone receptor expression in granulosa cells: relationship to sterol metabolism. Mol. Endocrinol. 21(9), 2233–2241 (2007). doi:10.1210/me.2007-0102

    Article  CAS  PubMed  Google Scholar 

  36. K.M.J. Menon, K.P. Gunaga, Role of cyclic AMP in reproductive processes. Fertil. Steril. 25(8), 732–750 (1974)

    Article  CAS  PubMed  Google Scholar 

  37. N. Hay, N. Sonenberg, Upstream and downstream of mTOR. Genes Dev. 18(16), 1926–1945 (2004). doi:10.1101/gad.1212704

    Article  CAS  PubMed  Google Scholar 

  38. D.R. Alessi, P. Cohen, Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev. 8(1), 55–62 (1998)

    Article  CAS  PubMed  Google Scholar 

  39. J. Cottom, L.M. Salvador, E.T. Maizels, S. Reierstad, Y. Park, D.W. Carr, M.A. Davare, J.W. Hell, S.S. Palmer, P. Dent, H. Kawakatsu, M. Ogata, M. Hunzicker-Dunn, Follicle-stimulating hormone activates extracellular signal-regulated kinase but not extracellular signal-regulated kinase kinase through a 100-kDa phosphotyrosine phosphatase. J. Biol. Chem. 278(9), 7167–7179 (2003). doi:10.1074/jbc.M203901200

    Article  CAS  PubMed  Google Scholar 

  40. I.J. Gonzalez-Robayna, A.E. Falender, S. Ochsner, G.L. Firestone, J.S. Richards, Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol. Endocrinol. 14(8), 1283–1300 (2000). doi:10.1210/mend.14.8.0500

    Article  CAS  PubMed  Google Scholar 

  41. M. Palaniappan, K.M.J. Menon, Human chorionic gonadotropin stimulates theca-interstitial cell proliferation and cell cycle regulatory proteins by a cAMP-dependent activation of AKT/mTORC1 signaling pathway. Mol. Endocrinol. 24(9), 1782–1793 (2010). doi:10.1210/me.2010-0044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Palaniappan, K.M.J. Menon, Luteinizing hormone/human chorionic gonadotropin-mediated activation of mTORC1 signaling is required for androgen synthesis by theca-interstitial cells. Mol. Endocrinol. 26(10), 1732–1742 (2012). doi:10.1210/me.2012-1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Lee, M. Coco, S.M. Greenstein, R.S. Schechner, V.A. Tellis, D.G. Glicklich, The effect of sirolimus on sex hormone levels of male renal transplant recipients. Clin. Transplant. 19(2), 162–167 (2005). doi:10.1111/j.1399-0012.2005.00257.x

    Article  PubMed  Google Scholar 

  44. L. Fritsche, K. Budde, D. Dragun, G. Einecke, F. Diekmann, H.H. Neumayer, Testosterone concentrations and sirolimus in male renal transplant patients. Am. J. Transplant. 4(1), 130–131 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Boobes, B. Bernieh, H. Saadi, M. Raafat Al Hakim, S. Abouchacra, : Gonadal dysfunction and infertility in kidney transplant patients receiving sirolimus. Int. Urol. Nephrol. 42(2), 493–498 (2010). doi:10.1007/s11255-009-9644-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to express appreciation to the staff at IVF facility in the University of Michigan for providing ovarian follicular aspirates. They are grateful to Sarah Block for critical reading of the manuscript and many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.M.J. Menon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Exception granted since the material used are otherwise discarded.

Additional information

Molly B. Moravek and Min Shang contributed equally to the work.

Min Shang’s present address: Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moravek, M.B., Shang, M., Menon, B. et al. HCG-mediated activation of mTORC1 signaling plays a crucial role in steroidogenesis in human granulosa lutein cells. Endocrine 54, 217–224 (2016). https://doi.org/10.1007/s12020-016-1065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1065-8

Keywords

Navigation