Skip to main content
Log in

The combination of TP53INP1, TP53INP2 and AXIN2: potential biomarkers in papillary thyroid carcinoma

  • Research Letter
  • Published:
Endocrine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. A.Y. Chen, A. Jemal, E.M. Ward, Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 115(16), 3801 (2009)

    Article  PubMed  Google Scholar 

  2. X. Liu, M. He, Y. Hou, B. Liang, L. Zhao, S. Ma et al., Expression profiles of microRNAs and their target genes in papillary thyroid carcinoma. Oncol. Rep. 29(4), 1415 (2013)

    CAS  PubMed  Google Scholar 

  3. D. Taieb, S. Giusiano, F. Sebag, M. Marcy, C. de Micco, F.F. Palazzo et al., Tumor protein p53-induced nuclear protein (TP53INP1) expression in medullary thyroid carcinoma: a molecular guide to the optimal extent of surgery? World J. Surg. 34(4), 830 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. B.G. Baumgartner, M. Orpinell, J. Duran, V. Ribas, H.E. Burghardt, D. Bach et al., Identification of a novel modulator of thyroid hormone receptor-mediated action. PLoS One 2(11), e1183 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  5. T.A. Haj-Ahmad, M.A. Abdalla, Y. Haj-Ahmad, Potential urinary protein biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J. Cancer 5(2), 103 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  6. Z.Q. Wu, T. Brabletz, E. Fearon, A.L. Willis, C.Y. Hu, X.Y. Li et al., Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proc. Natl. Acad. Sci. U.S.A. 109(28), 11312 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. T. Shirakihara, T. Kawasaki, A. Fukagawa, K. Semba, R. Sakai, K. Miyazono et al., Identification of integrin alpha3 as a molecular marker of cells undergoing epithelial–mesenchymal transition and of cancer cells with aggressive phenotypes. Cancer Sci. 104(9), 1189 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. G.J. Gordon, R.V. Jensen, L.L. Hsiao, S.R. Gullans, J.E. Blumenstock, S. Ramaswamy et al., Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62(17), 4963 (2002)

    CAS  PubMed  Google Scholar 

  9. K.H. Zou, A.J. O’Malley, L. Mauri, Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115(5), 654 (2007)

    Article  PubMed  Google Scholar 

  10. T.A. Lasko, J.G. Bhagwat, K.H. Zou, L. Ohno-Machado, The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform. 38(5), 404 (2005)

    Article  PubMed  Google Scholar 

  11. C. Wang, L.M. Crapo, The epidemiology of thyroid disease and implications for screening. Endocrinol. Metab. Clin. N. Am. 26(1), 189 (1997)

    Article  CAS  Google Scholar 

  12. H. Gharib, Changing trends in thyroid practice: understanding nodular thyroid disease. Endocr. Pract. 10(1), 31 (2004)

    Article  PubMed  Google Scholar 

  13. N.B. Prasad, H. Somervell, R.P. Tufano, A.P. Dackiw, M.R. Marohn, J.A. Califano et al., Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin. cancer Res. 14(11), 3327 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. D.S. Cooper, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel et al., Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11), 1167 (2009)

    Article  PubMed  Google Scholar 

  15. A. Guerra, V. Marotta, M. Deandrea, M. Motta, P.P. Limone, A. Caleo et al., BRAF (V600E) associates with cytoplasmatic localization of p27kip1 and higher cytokeratin 19 expression in papillary thyroid carcinoma. Endocrine 44(1), 165 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. Di Benedetto G., Thyroid fine-needle aspiration: the relevance of BRAF mutation testing. Endocrine. 2014. doi:10.1007/s12020-014-0222-1

  17. Seo J.Y, Kim E.K, Kwak J.Y, Additional BRAF mutation analysis may have additional diagnostic value in thyroid nodules with “suspicious for malignant” cytology alone even when the nodules do not show suspicious US features. Endocrine. 2014. doi:10.1007/s12020-013-0150-5

  18. A. Guerra, V. Di Stasi, P. Zeppa, A. Faggiano, V. Marotta, M. Vitale, BRAF (V600E) assessment by pyrosequencing in fine needle aspirates of thyroid nodules with concurrent Hashimoto’s thyroiditis is a reliable assay. Endocrine 45(2), 249 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. E. Puxeddu, S. Filetti, BRAF mutation assessment in papillary thyroid cancer: are we ready to use it in clinical practice? Endocrine 45(3), 341 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NSFC Grant (30770649, 30970682), Research Fund for the Doctoral Program of Higher Education of China (20100061110070), Program for New Century Excellent Talents in University.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Liu or Shumei Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Zhao, Y., Yi, H. et al. The combination of TP53INP1, TP53INP2 and AXIN2: potential biomarkers in papillary thyroid carcinoma. Endocrine 48, 712–717 (2015). https://doi.org/10.1007/s12020-014-0341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0341-8

Keywords

Navigation