Skip to main content

Advertisement

Log in

Dexamethasone altered steroidogenesis and changed redox status of granulosa cells

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Glucocorticoids have been widely used in clinical application for anti-inflammatory and immunosuppressive function. Previous study reported that glucocorticoids adversely affect the reproductive system and can directly act on ovary. Here, we found that progesterone production induced by dexamethasone requiring activation of caspase-3 which may mediate differentiation and apoptosis of granulosa cells. Further study displayed that cellular glutathione level was increased and reactive oxygen species was decreased accompanied with unchanged mitochondrial membrane potential which may contribute to the maintenance of steroidogenesis in granulosa cells treated with dexamethasone. Dexamethasone also augmented the level of anti-Müllerian hormone secreted by preovulatory granulosa cells which indicated that dexamethasone may promote preantral follicles development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.J. Barnes, I. Adcock, Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol. Sci. 14(12), 436–441 (1993)

    Article  PubMed  CAS  Google Scholar 

  2. S. Jeyamohan et al., 158 Dexamethasone’s effect in multiple-level anterior cervical discectomy and fusion. Neurosurgery. 60(Suppl 1), 172–173 (2013)

    Google Scholar 

  3. J. Lindholm, Cushing’s disease, pseudo-Cushing states and the dexamethasone test: a historical and critical review. Pituitary. doi:10.1007/s11102-013-0509-x

  4. M. Poulain et al., Dexamethasone induces germ cell apoptosis in the human fetal ovary. J. Clin. Endocrinol. Metab. 97(10), E1890–E1897 (2012)

    Article  PubMed  CAS  Google Scholar 

  5. D.V. Milutinovic et al., Hypothalamic–pituitary–adrenocortical axis hypersensitivity and glucocorticoid receptor expression and function in women with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes 119(10), 636–643 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. R. Sakumoto, S. Ito, K. Okuda, Changes in expression of 11beta-hydroxysteroid dehydrogenase type-1, type-2 and glucocorticoid receptor mRNAs in porcine corpus luteum during the estrous cycle. Mol. Reprod. Dev. 75(5), 925–930 (2008)

    Article  PubMed  CAS  Google Scholar 

  7. M. Tetsuka et al., Expression of 11beta-hydroxysteroid dehydrogenase, glucocorticoid receptor, and mineralocorticoid receptor genes in rat ovary. Biol. Reprod. 60(2), 330–335 (1999)

    Article  PubMed  CAS  Google Scholar 

  8. M. Irahara et al., Glucocorticoid receptor-mediated post-ceramide inhibition of the interleukin-1beta-dependent induction of ovarian prostaglandin endoperoxide synthase-2 in rats. Biol. Reprod. 60(4), 946–953 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. S. Kol et al., Glucocorticoids suppress basal (but not interleukin-1-supported) ovarian phospholipase A2 activity: evidence for glucocorticoid receptor-mediated regulation. Mol. Cell. Endocrinol. 137(2), 117–125 (1998)

    Article  PubMed  CAS  Google Scholar 

  10. E.A. McGee, A.J. Hsueh, Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21(2), 200–214 (2000)

    PubMed  CAS  Google Scholar 

  11. K. Yacobi et al., Gonadotropins enhance caspase-3 and -7 activity and apoptosis in the theca-interstitial cells of rat preovulatory follicles in culture. Endocrinology 145(4), 1943–1951 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. X.H. Yuan et al., Arsenic induced progesterone production in a caspase-3-dependent manner and changed redox status in preovulatory granulosa cells. J. Cell Physiol. 227(1), 194–203 (2012)

    Article  PubMed  CAS  Google Scholar 

  13. G.D. Niswender, Molecular control of luteal secretion of progesterone. Reproduction 123(3), 333–339 (2002)

    Article  PubMed  CAS  Google Scholar 

  14. N. Pescador et al., Follicle-stimulating hormone and intracellular second messengers regulate steroidogenic acute regulatory protein messenger ribonucleic acid in luteinized porcine granulosa cells. Biol. Reprod. 57(3), 660–668 (1997)

    Article  PubMed  CAS  Google Scholar 

  15. K. Tajima et al., Establishment of FSH-responsive cell lines by transfection of pre-ovulatory human granulosa cells with mutated p53 (p53val135) and Ha-ras genes. Mol. Hum. Reprod. 8(1), 48–57 (2002)

    Article  PubMed  CAS  Google Scholar 

  16. Y.J. Chen et al., Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. J. Endocrinol. 192(2), 405–419 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. D.B. Hales et al., Mitochondrial function in Leydig cell steroidogenesis. Ann. NY Acad. Sci. 1061, 120–134 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. J.A. Allen et al., Energized, polarized, and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinology 147(8), 3924–3935 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. S.R. King et al., Effects of disruption of the mitochondrial electrochemical gradient on steroidogenesis and the Steroidogenic Acute Regulatory (StAR) protein. J. Steroid Biochem. Mol. Biol. 69(1–6), 143–154 (1999)

    Article  PubMed  CAS  Google Scholar 

  20. X.M. Qi et al., ROS generated by CYP450, especially CYP2E1, mediate mitochondrial dysfunction induced by tetrandrine in rat hepatocytes. Acta Pharmacol. Sin. 34(9), 1229–1236 (2013)

    Google Scholar 

  21. L. Zhou et al., Oxidative stress and phthalate-induced down-regulation of steroidogenesis in MA-10 Leydig cells. Reprod. Toxicol. 42, 95–101 (2013)

    Article  PubMed  CAS  Google Scholar 

  22. H. Chen et al., Effect of glutathione depletion on Leydig cell steroidogenesis in young and old brown Norway rats. Endocrinology 149(5), 2612–2619 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. W.M. Baarends et al., Anti-Mullerian hormone and anti-Mullerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology 136(11), 4951–4962 (1995)

    PubMed  CAS  Google Scholar 

  24. J.A. Visser et al., Anti-Mullerian hormone: a new marker for ovarian function. Reproduction 131(1), 1–9 (2006)

    Article  PubMed  CAS  Google Scholar 

  25. D.B. Seifer et al., Early follicular serum Mullerian-inhibiting substance levels are associated with ovarian response during assisted reproductive technology cycles. Fertil. Steril. 77(3), 468–471 (2002)

    Article  PubMed  Google Scholar 

  26. I.A. van Rooij et al., Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve. Hum. Reprod. 17(12), 3065–3071 (2002)

    Article  PubMed  Google Scholar 

  27. B. Jana et al., Dexamethasone-induced changes in sympathetic innervation of porcine ovaries and in their steroidogenic activity. J. Reprod. Dev. 51(6), 715–725 (2005)

    Article  PubMed  CAS  Google Scholar 

  28. P.F. Terranova, F. Garza, Relationship between the preovulatory luteinizing hormone (LH) surge and androstenedione synthesis of preantral follicles in the cyclic hamster: detection by in vitro responses to LH. Biol. Reprod. 29(3), 630–636 (1983)

    Article  PubMed  CAS  Google Scholar 

  29. L.P. Roma et al., Pancreatic islets from dexamethasone-treated rats show alterations in global gene expression and mitochondrial pathways. Gen. Physiol. Biophys. 31(1), 65–76 (2012)

    Article  PubMed  CAS  Google Scholar 

  30. J.M. De Corral Saleta, J.C. Penhos, A.F. Cardeza, Diabetogenic and antidiabetogenic action of triamcinolone and dexamethasone. C. R. Seances Soc. Biol. Fil. 154, 2371–2372 (1960)

    Google Scholar 

  31. U. Bandyopadhyay et al., Dexamethasone makes the gastric mucosa susceptible to ulceration by inhibiting prostaglandin synthetase and peroxidase—two important gastroprotective enzymes. Mol. Cell. Biochem. 202(1–2), 31–36 (1999)

    Article  PubMed  CAS  Google Scholar 

  32. Z. Ben-Rafael et al., Cortisol stimulation of estradiol and progesterone secretion by human granulosa cells is independent of follicle-stimulating hormone effects. Fertil. Steril. 49(5), 813–816 (1988)

    PubMed  CAS  Google Scholar 

  33. J.G. Yang, C.C. Yu, P.S. Li, Dexamethasone enhances follicle stimulating hormone-induced P450scc mRNA expression and progesterone production in pig granulosa cells. Chin. J. Physiol. 44(3), 111–119 (2001)

    PubMed  Google Scholar 

  34. T.J. Huang, P.S. Li, Dexamethasone inhibits luteinizing hormone-induced synthesis of steroidogenic acute regulatory protein in cultured rat preovulatory follicles. Biol. Reprod. 64(1), 163–170 (2001)

    Article  PubMed  CAS  Google Scholar 

  35. A.J. Bhatt et al., Dexamethasone induces apoptosis of progenitor cells in the subventricular zone and dentate gyrus of developing rat brain. J. Neurosci. Res. 91(9), 1191–1202 (2013)

    Article  PubMed  CAS  Google Scholar 

  36. G.B. Park et al., ROS and ERK1/2-mediated caspase-9 activation increases XAF1 expression in dexamethasone-induced apoptosis of EBV-transformed B cells. Int. J. Oncol. 43(1), 29–38 (2013)

    PubMed  CAS  PubMed Central  Google Scholar 

  37. K. Yacobi, A. Tsafriri, A. Gross, Luteinizing hormone-induced caspase activation in rat preovulatory follicles is coupled to mitochondrial steroidogenesis. Endocrinology 148(4), 1717–1726 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. L. Oliver, F.M. Vallette, The role of caspases in cell death and differentiation. Drug Resist. Updates 8(3), 163–170 (2005)

    Article  CAS  Google Scholar 

  39. M. Lamkanfi et al., Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 14(1), 44–55 (2007)

    Article  PubMed  CAS  Google Scholar 

  40. R.H. Braw, S. Bar-Ami, A. Tsafriri, Effect of hypophysectomy on atresia of rat preovulatory follicles. Biol. Reprod. 25(5), 989–996 (1981)

    Article  PubMed  CAS  Google Scholar 

  41. K. Hummitzsch et al., Spheroids of granulosa cells provide an in vitro model for programmed cell death coupled to steroidogenesis. Differentiation 77(1), 60–69 (2009)

    Article  PubMed  CAS  Google Scholar 

  42. T. Diemer et al., Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144(7), 2882–2891 (2003)

    Article  PubMed  CAS  Google Scholar 

  43. C.L. Kao et al., Resveratrol promotes osteogenic differentiation and protects against dexamethasone damage in murine induced pluripotent stem cells. Stem Cells Dev. 19(2), 247–258 (2010)

    Article  PubMed  CAS  Google Scholar 

  44. A. Amsterdam et al., Steroidogenesis and apoptosis in the mammalian ovary. Steroids 68(10–13), 861–867 (2003)

    Article  PubMed  CAS  Google Scholar 

  45. M.A. Behera et al., Progesterone stimulates mitochondrial activity with subsequent inhibition of apoptosis in MCF-10A benign breast epithelial cells. Am. J. Physiol. Endocrinol. Metab. 297(5), E1089–E1096 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (81200418). Core facilities used in this research were provided by the Department of Genetics, National Research Institute for Family Planning and Central Laboratory, Shaanxi Provincial People’s Hospital.

Conflict of interest

We wish to draw the attention of the Editor to the following facts which may be considered as potential conflicts of interest and to significant financial contributions to this work. We wish to confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing, we confirm that we have followed the regulations of our institutions concerning intellectual property.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Qin Wang, Cai-Ling Lu or Xu Ma.

Additional information

Xiao-Hua Yuan, Bai-Qing Yang, and Ying Hu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, XH., Yang, BQ., Hu, Y. et al. Dexamethasone altered steroidogenesis and changed redox status of granulosa cells. Endocrine 47, 639–647 (2014). https://doi.org/10.1007/s12020-014-0250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0250-x

Keywords

Navigation