Skip to main content

Advertisement

Log in

Zinc and insulin in pancreatic beta-cells

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Zinc (Zn2+) is an essential element crucial for growth and development, and also plays a role in cell signaling for cellular processes like cell division and apoptosis. In the mammalian pancreas, Zn2+ is essential for the correct processing, storage, secretion, and action of insulin in beta (β)-cells. Insulin is stored inside secretory vesicles or granules, where two Zn2+ ions coordinate six insulin monomers to form the hexameric-structure on which maturated insulin crystals are based. The total Zn2+ content of the mammalian pancreas is among the highest in the body, and Zn2+ concentration reach millimolar levels in the interior of the dense-core granule. Changes in Zn2+ levels in the pancreas have been found to be associated with diabetes. Hence, the relationship between co-stored Zn2+ and insulin undoubtedly is critical to normal β-cell function. The advances in the field of Zn2+ biology over the last decade have facilitated our understanding of Zn2+ trafficking, its intracellular distribution and its storage. When exocytosis of insulin occurs, insulin granules fuse with the β-cell plasma membrane and release their contents, i.e., insulin as well as substantial amount of free Zn2+, into the extracellular space and the local circulation. Studies increasingly indicate that secreted Zn2+ has autocrine or paracrine signaling in β-cells or the neighboring cells. This review discusses the Zn2+ homeostasis in β-cells with emphasis on the potential signaling role of Zn2+ to islet biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. F.G. Banting, C.H. Best, The internal secretion of the pancreas. 1922. Indian J. Med. Res. 125(3), 251–266 (2007)

    CAS  PubMed  Google Scholar 

  2. M. Bliss, Banting’s, Best’s, and Collip’s accounts of the discovery of insulin. Bull. Hist. Med. 56(4), 554–568 (1982)

    CAS  PubMed  Google Scholar 

  3. M. Bliss, The discovery of insulin: the inside story. Publ. Am. Inst. Hist. Pharm. 16, 93–99 (1997)

    CAS  PubMed  Google Scholar 

  4. D.A. Scott, A.M. Fisher, The insulin and the zinc content of normal and diabetic pancreas. J. Clin. Invest. 17(6), 725–728 (1938)

    CAS  PubMed Central  PubMed  Google Scholar 

  5. G.D. Smith et al., Structural stability in the 4-zinc human insulin hexamer. Proc. Natl. Acad. Sci. USA 81(22), 7093–7097 (1984)

    CAS  PubMed  Google Scholar 

  6. M.F. Dunn et al., Comparison of the zinc binding domains in the 7S nerve growth factor and the zinc-insulin hexamer. Biochemistry 19(4), 718–725 (1980)

    CAS  PubMed  Google Scholar 

  7. J. Goldman, F.H. Carpenter, Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 13(22), 4566–4574 (1974)

    CAS  PubMed  Google Scholar 

  8. D.P. Figlewicz et al., Kinetics of 65zinc uptake and distribution in fractions from cultured rat islets of langerhans. Diabetes 29(10), 767–773 (1980)

    CAS  PubMed  Google Scholar 

  9. S.O. Emdin et al., Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 19(3), 174–182 (1980)

    CAS  PubMed  Google Scholar 

  10. S.J. Chan, P. Keim, D.F. Steiner, Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. USA 73(6), 1964–1968 (1976)

    CAS  PubMed  Google Scholar 

  11. D.F. Steiner, Editorial: Errors in insulin biosynthesis. N. Engl. J. Med. 294(17), 952–953 (1976)

    CAS  PubMed  Google Scholar 

  12. D.F. Steiner et al., Chemical and biological aspects of insulin and proinsulin. Acta Med. Scand. Suppl. 601, 55–107 (1976)

    CAS  PubMed  Google Scholar 

  13. T.L. Blundell et al., Three-dimensional atomic structure of insulin and its relationship to activity. Diabetes 21(2 Suppl), 492–505 (1972)

    CAS  PubMed  Google Scholar 

  14. D.F. Steiner, Adventures with insulin in the islets of Langerhans. J. Biol. Chem. 286(20), 17399–17421 (2011)

    CAS  PubMed  Google Scholar 

  15. B.K. Milthorpe, L.W. Nichol, P.D. Jeffrey, The polymerization pattern of zinc(II)-insulin at pH 7.0. Biochim. Biophys. Acta 495(2), 195–202 (1977)

    CAS  PubMed  Google Scholar 

  16. C.P. Hill et al., X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer. Biochemistry 30(4), 917–924 (1991)

    CAS  PubMed  Google Scholar 

  17. M.F. Dunn, Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18(4), 295–303 (2005)

    CAS  PubMed  Google Scholar 

  18. D.F. Steiner et al., A brief perspective on insulin production. Diabetes Obes. Metab. 11(Suppl 4), 189–196 (2009)

    CAS  PubMed  Google Scholar 

  19. S.L. Howell, D.A. Young, P.E. Lacy, Isolation and properties of secretory granules from rat islets of Langerhans. 3. Studies of the stability of the isolated beta granules. J. Cell Biol. 41(1), 167–176 (1969)

    CAS  PubMed  Google Scholar 

  20. G. Gold, G.M. Grodsky, Kinetic aspects of compartmental storage and secretion of insulin and zinc. Experientia 40(10), 1105–1114 (1984)

    CAS  PubMed  Google Scholar 

  21. B. Formby, F. Schmid-Formby, G.M. Grodsky, Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture. Diabetes 33(3), 229–234 (1984)

    CAS  PubMed  Google Scholar 

  22. C.E. Outten, T.V. O’Halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526), 2488–2492 (2001)

    CAS  PubMed  Google Scholar 

  23. B.L. Vallee, K.H. Falchuk, The biochemical basis of zinc physiology. Physiol. Rev. 73(1), 79–118 (1993)

    CAS  PubMed  Google Scholar 

  24. R.J. Cousins, J.P. Liuzzi, L.A. Lichten, Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281(34), 24085–24089 (2006)

    CAS  PubMed  Google Scholar 

  25. D.J. Eide, Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763(7), 711–722 (2006)

    CAS  PubMed  Google Scholar 

  26. P.D. Zalewski et al., Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J. Histochem. Cytochem. 42(7), 877–884 (1994)

    CAS  PubMed  Google Scholar 

  27. M.C. Foster et al., Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys. J. 64(2), 525–532 (1993)

    CAS  PubMed Central  PubMed  Google Scholar 

  28. A. Krezel, W. Maret, Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J. Biol. Inorg. Chem. 11(8), 1049–1062 (2006)

    CAS  PubMed  Google Scholar 

  29. Y. Li, W. Maret, Transient fluctuations of intracellular zinc ions in cell proliferation. Exp. Cell Res. 315(14), 2463–2470 (2009)

    CAS  PubMed  Google Scholar 

  30. E.A. Bellomo, G. Meur, G.A. Rutter, Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet {beta}-cells. J. Biol. Chem. 286(29), 25778–25789 (2011)

    CAS  PubMed  Google Scholar 

  31. M. Foster, S. Samman, Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid. Redox Signal 13(10), 1549–1573 (2010)

    CAS  PubMed  Google Scholar 

  32. M. Hershfinkel, W.F. Silverman, I. Sekler, The zinc sensing receptor, a link between zinc and cell signaling. Mol. Med. 13(7–8), 331–336 (2007)

    CAS  PubMed Central  PubMed  Google Scholar 

  33. H. Haase, L. Rink, Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 29, 133–152 (2009)

    CAS  PubMed  Google Scholar 

  34. S.L. Sensi et al., Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10(11), 780–791 (2009)

    CAS  PubMed  Google Scholar 

  35. K.G. Slepchenko, Y.V. Li, Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells. Exp. Diabetes Res. 2012, 190309 (2012)

    PubMed Central  PubMed  Google Scholar 

  36. L.A. Gaither, D.J. Eide, Eukaryotic zinc transporters and their regulation. Biometals 14(3–4), 251–270 (2001)

    CAS  PubMed  Google Scholar 

  37. C.J. Frederickson, J.Y. Koh, A.I. Bush, The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6(6), 449–462 (2005)

    CAS  PubMed  Google Scholar 

  38. Y.V. Li, Zinc overload in stroke, in Metal Ion in Stroke, ed. by Y.V. Li, J.H. Zhang (Springer Science + Business Media, New York, 2012), pp. 167–189

    Google Scholar 

  39. G. Csordas, G. Hajnoczky, Plasticity of mitochondrial calcium signaling. J. Biol. Chem. 278(43), 42273–42282 (2003)

    CAS  PubMed  Google Scholar 

  40. I.G. Gazaryan et al., Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J. Biol. Chem. 282(33), 24373–24380 (2007)

    CAS  PubMed  Google Scholar 

  41. D. Jiang et al., Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 276(50), 47524–47529 (2001)

    CAS  PubMed  Google Scholar 

  42. C.J. Stork, Y.V. Li, Zinc release from thapsigargin/IP3-sensitive stores in cultured cortical neurons. J. Mol. Signal 5, 5 (2010)

    PubMed Central  PubMed  Google Scholar 

  43. T.J. Ostwald, D.H. MacLennan, Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249(3), 974–979 (1974)

    CAS  PubMed  Google Scholar 

  44. E.F. Corbett et al., The conformation of calreticulin is influenced by the endoplasmic reticulum luminal environment. J. Biol. Chem. 275(35), 27177–27185 (2000)

    CAS  PubMed  Google Scholar 

  45. N.C. Khanna, M. Tokuda, D.M. Waisman, Conformational changes induced by binding of divalent cations to calregulin. J. Biol. Chem. 261(19), 8883–8887 (1986)

    CAS  PubMed  Google Scholar 

  46. S. Baksh et al., Identification of the Zn2+ binding region in calreticulin. FEBS Lett. 376(1–2), 53–57 (1995)

    CAS  PubMed  Google Scholar 

  47. Y. Tan et al., The calcium- and zinc-responsive regions of calreticulin reside strictly in the N-/C-domain. Biochim. Biophys. Acta 1760(5), 745–753 (2006)

    CAS  PubMed  Google Scholar 

  48. L. Guo et al., Identification of an N-domain histidine essential for chaperone function in calreticulin. J. Biol. Chem. 278(50), 50645–50653 (2003)

    CAS  PubMed  Google Scholar 

  49. W. Qiao et al., Zinc status and vacuolar zinc transporters control alkaline phosphatase accumulation and activity in Saccharomyces cerevisiae. Mol. Microbiol. 72(2), 320–334 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  50. K. Ishihara et al., Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J. Biol. Chem. 281(26), 17743–17750 (2006)

    CAS  PubMed  Google Scholar 

  51. T. Suzuki et al., Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J. Biol. Chem. 280(35), 30956–30962 (2005)

    CAS  PubMed  Google Scholar 

  52. C.D. Ellis, C.W. Macdiarmid, D.J. Eide, Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J. Biol. Chem. 280(31), 28811–28818 (2005)

    CAS  PubMed  Google Scholar 

  53. C.D. Ellis et al., Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J. Cell Biol. 166(3), 325–335 (2004)

    CAS  PubMed  Google Scholar 

  54. T. Suzuki et al., Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J. Biol. Chem. 280(1), 637–643 (2005)

    CAS  PubMed  Google Scholar 

  55. W. Maret, Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp. Gerontol. 43(5), 363–369 (2008)

    CAS  PubMed  Google Scholar 

  56. D.K. Lee et al., Pancreatic metallothionein-I may play a role in zinc homeostasis during maternal dietary zinc deficiency in mice. J. Nutr. 133(1), 45–50 (2003)

    CAS  PubMed  Google Scholar 

  57. G.K. Andrews et al., Metal ions induce expression of metallothionein in pancreatic exocrine and endocrine cells. Pancreas 5(5), 548–554 (1990)

    CAS  PubMed  Google Scholar 

  58. T. Tomita, Metallothionein in pancreatic endocrine neoplasms. Mod. Pathol. 13(4), 389–395 (2000)

    CAS  PubMed  Google Scholar 

  59. L. Cai, Metallothionein as an adaptive protein prevents diabetes and its toxicity. Nonlinearity Biol. Toxicol. Med. 2(2), 89–103 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  60. S.G. Laychock, J. Duzen, C.O. Simpkins, Metallothionein induction in islets of Langerhans and insulinoma cells. Mol. Cell. Endocrinol. 165(1–2), 179–187 (2000)

    CAS  PubMed  Google Scholar 

  61. J. Yang, M.G. Cherian, Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci. 55(1), 43–51 (1994)

    CAS  PubMed  Google Scholar 

  62. Z.H. Wang et al., Increased pancreatic metallothionein and glutathione levels: protecting against cerulein- and taurocholate-induced acute pancreatitis in rats. Pancreas 13(2), 173–183 (1996)

    CAS  PubMed  Google Scholar 

  63. C.J. Frederickson et al., Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp. Neurol. 198(2), 285–293 (2006)

    CAS  PubMed  Google Scholar 

  64. R.A. Bozym et al., Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp. Biol. Med. (Maywood) 235(6), 741–750 (2010)

    CAS  Google Scholar 

  65. L. Cai et al., Essentiality, toxicology and chelation therapy of zinc and copper. Curr. Med. Chem. 12(23), 2753–2763 (2005)

    CAS  PubMed  Google Scholar 

  66. V. Frazzini et al., Oxidative stress and brain aging: is zinc the link? Biogerontology 7(5–6), 307–314 (2006)

    CAS  PubMed  Google Scholar 

  67. C.J. Frederickson et al., Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr. 130(5S Suppl), 1471S–1483S (2000)

    CAS  PubMed  Google Scholar 

  68. A.S. Prasad, Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 43(5), 370–377 (2008)

    CAS  PubMed  Google Scholar 

  69. A.Q. Truong-Tran et al., The role of zinc in caspase activation and apoptotic cell death. Biometals 14(3–4), 315–330 (2001)

    CAS  PubMed  Google Scholar 

  70. C.T. Walsh et al., Zinc: health effects and research priorities for the 1990s. Environ. Health Perspect. 102(Suppl 2), 5–46 (1994)

    CAS  PubMed Central  PubMed  Google Scholar 

  71. S.R. Hubbard et al., Identification and characterization of zinc binding sites in protein kinase C. Science 254(5039), 1776–1779 (1991)

    CAS  PubMed  Google Scholar 

  72. A.F. Quest et al., The regulatory domain of protein kinase C coordinates four atoms of zinc. J. Biol. Chem. 267(14), 10193–10197 (1992)

    CAS  PubMed  Google Scholar 

  73. K.I. Jeon, J.Y. Jeong, D.M. Jue, Thiol-reactive metal compounds inhibit NF-kappa B activation by blocking I kappa B kinase. J. Immunol. 164(11), 5981–5989 (2000)

    CAS  PubMed  Google Scholar 

  74. G.J. Brewer et al., Zinc inhibition of calmodulin: a proposed molecular mechanism of zinc action on cellular functions. Am. J. Hematol. 7(1), 53–60 (1979)

    CAS  PubMed  Google Scholar 

  75. I. Lengyel et al., Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J. Neurochem. 75(2), 594–605 (2000)

    CAS  PubMed  Google Scholar 

  76. R.P. Weinberger, J.A. Rostas, Effect of zinc on calmodulin-stimulated protein kinase II and protein phosphorylation in rat cerebral cortex. J. Neurochem. 57(2), 605–614 (1991)

    CAS  PubMed  Google Scholar 

  77. J.A. Park, J.Y. Koh, Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J. Neurochem. 73(2), 450–456 (1999)

    CAS  PubMed  Google Scholar 

  78. S. Kim et al., NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice. Proc. Natl. Acad. Sci. USA 104(6), 1913–1918 (2007)

    CAS  PubMed  Google Scholar 

  79. T. Kambe et al., Overview of mammalian zinc transporters. Cell. Mol. Life Sci. 61(1), 49–68 (2004)

    CAS  PubMed  Google Scholar 

  80. K.A. Jackson et al., Mechanisms of mammalian zinc-regulated gene expression. Biochem. Soc. Trans. 36(Pt 6), 1262–1266 (2008)

    CAS  PubMed  Google Scholar 

  81. R.J. Cousins et al., Regulation of zinc metabolism and genomic outcomes. J. Nutr. 133(5 Suppl 1), 1521S–1526S (2003)

    CAS  PubMed  Google Scholar 

  82. L.A. Lichten, R.J. Cousins, Mammalian zinc transporters: nutritional and physiologic regulation. Annu. Rev. Nutr. 29, 153–176 (2009)

    PubMed  Google Scholar 

  83. Y. Chao, D. Fu, Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter. ZitB. J. Biol. Chem. 279(13), 12043–12050 (2004)

    CAS  Google Scholar 

  84. A.A. Guffanti et al., An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 45(1), 145–153 (2002)

    CAS  PubMed  Google Scholar 

  85. T. Bloss, S. Clemens, D.H. Nies, Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214(5), 783–791 (2002)

    CAS  PubMed  Google Scholar 

  86. R.D. Palmiter et al., ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 93(25), 14934–14939 (1996)

    CAS  PubMed  Google Scholar 

  87. L. Huang et al., The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280(15), 15456–15463 (2005)

    CAS  PubMed  Google Scholar 

  88. W. Chowanadisai, B. Lonnerdal, S.L. Kelleher, Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions. Brain Res. 1199, 10–19 (2008)

    CAS  PubMed  Google Scholar 

  89. L. Belloni-Olivi et al., Localization of zip1 and zip4 mRNA in the adult rat brain. J. Neurosci. Res. 87(14), 3221–3230 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  90. J. Dufner-Beattie et al., Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44(5), 239–251 (2006)

    CAS  PubMed  Google Scholar 

  91. L. Huang, M. Yan, C.P. Kirschke, Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp. Cell Res. 316(16), 2630–2643 (2011)

    Google Scholar 

  92. K. Smidt et al., SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS One 4(5), e5684 (2009)

    PubMed Central  PubMed  Google Scholar 

  93. A.V. Gyulkhandanyan et al., Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J. Biol. Chem. 283(15), 10184–10197 (2008)

    CAS  PubMed  Google Scholar 

  94. T. Kambe et al., Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J. Biol. Chem. 277(21), 19049–19055 (2002)

    CAS  PubMed  Google Scholar 

  95. R.A. Colvin et al., Zn2+ transporters and Zn2+ homeostasis in neurons. Eur. J. Pharmacol. 479(1–3), 171–185 (2003)

    CAS  PubMed  Google Scholar 

  96. C.W. Shuttleworth, J.H. Weiss, Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol. Sci. 32(8), 480–486 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  97. E. Ohana et al., A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells. J. Biol. Chem. 279(6), 4278–4284 (2004)

    CAS  PubMed  Google Scholar 

  98. Y. Qin et al., Mechanisms of Zn2+ efflux in cultured cortical neurons. J. Neurochem. 107(5), 1304–1313 (2008)

    CAS  PubMed  Google Scholar 

  99. R.A. Colvin et al., Evidence for a zinc/proton antiporter in rat brain. Neurochem. Int. 36(6), 539–547 (2000)

    CAS  PubMed  Google Scholar 

  100. K. Inoue, D. Branigan, Z.G. Xiong, Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285(10), 7430–7439 (2010)

    CAS  PubMed  Google Scholar 

  101. T.F. Wagner et al., TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch. 460(4), 755–765 (2010)

    CAS  PubMed  Google Scholar 

  102. A.V. Gyulkhandanyan et al., The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J. Biol. Chem. 281(14), 9361–9372 (2006)

    CAS  PubMed  Google Scholar 

  103. F. Chimienti et al., Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9), 2330–2337 (2004)

    CAS  PubMed  Google Scholar 

  104. F. Chimienti et al., In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119(Pt 20), 4199–4206 (2006)

    CAS  PubMed  Google Scholar 

  105. N. Wijesekara, F. Chimienti, M.B. Wheeler, Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes. Metab. 11(Suppl 4), 202–214 (2009)

    CAS  PubMed  Google Scholar 

  106. G.A. Rutter, Think zinc: New roles for zinc in the control of insulin secretion. Islets 2(1), 49–50 (2011)

    Google Scholar 

  107. N. Wijesekara et al., Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53(8), 1656–1668 (2010)

    CAS  PubMed  Google Scholar 

  108. K. Lemaire et al., Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc. Natl. Acad. Sci. USA 106(35), 14872–14877 (2009)

    CAS  PubMed  Google Scholar 

  109. T.J. Nicolson et al., Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58(9), 2070–2083 (2009)

    CAS  PubMed  Google Scholar 

  110. L. Egefjord et al., Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis? BMC Endocr. Disord. 9, 7 (2009)

    PubMed Central  PubMed  Google Scholar 

  111. M. El Muayed et al., Acute cytokine-mediated downregulation of the zinc transporter ZnT8 alters pancreatic beta-cell function. J. Endocrinol. 206(2), 159–169 (2010)

    PubMed Central  PubMed  Google Scholar 

  112. C.B. Newgard, J.D. McGarry, Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu. Rev. Biochem. 64, 689–719 (1995)

    CAS  PubMed  Google Scholar 

  113. A. Tarasov, J. Dusonchet, F. Ashcroft, Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3), S113–S122 (2004)

    CAS  PubMed  Google Scholar 

  114. L. Aguilar-Bryan, J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20(2), 101–135 (1999)

    CAS  PubMed  Google Scholar 

  115. F.M. Ashcroft, P. Rorsman, G. Trube, Single calcium channel activity in mouse pancreatic beta-cells. Ann. N Y Acad. Sci. 560, 410–412 (1989)

    CAS  PubMed  Google Scholar 

  116. I. Findlay et al., Calcium currents in insulin-secreting beta-cells. Ann. N Y Acad. Sci. 560, 403–409 (1989)

    CAS  PubMed  Google Scholar 

  117. K. Aoyagi, M. Ohara-Imaizumi, S. Nagamatsu, Regulation of resident and newcomer insulin granules by calcium and SNARE proteins. Front Biosci. 16, 1197–1210 (2011)

    CAS  Google Scholar 

  118. T.L. Blundell et al., The crystal structure of rhombohedral 2 zinc insulin. Cold Spring Harb. Symp. Quant. Biol. 36, 233–241 (1972)

    CAS  PubMed  Google Scholar 

  119. D.J. Michael et al., Pancreatic beta-cells secrete insulin in fast- and slow-release forms. Diabetes 55(3), 600–607 (2006)

    CAS  PubMed  Google Scholar 

  120. R.P. Robertson, H. Zhou, M. Slucca, A role for zinc in pancreatic islet beta-cell cross-talk with the alpha-cell during hypoglycaemia. Diabetes Obes. Metab. 13(Suppl 1), 106–111 (2011)

    CAS  PubMed  Google Scholar 

  121. Li, Y., et al., Translocation of synaptically released zinc involves voltage dependent calcium channels (vdccs) in rat hippocampal ca3 pyramidal neurons. Society for Neuroscience, 2002 (Program No. 437.12.)

  122. Y. Li et al., Rapid translocation of zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J. Neurophysiol. 86(5), 2597–2604 (2001)

    CAS  PubMed  Google Scholar 

  123. Y.V. Li, C.J. Hough, J.M. Sarvey, Do we need zinc to think? Sci STKE 2003(182), pe19 (2003)

    PubMed  Google Scholar 

  124. H. Zhou et al., Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56(4), 1107–1112 (2007)

    CAS  PubMed  Google Scholar 

  125. F. Atouf, P. Czernichow, R. Scharfmann, Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J. Biol. Chem. 272(3), 1929–1934 (1997)

    CAS  PubMed  Google Scholar 

  126. N. Inagaki et al., Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9(8), 686–691 (1995)

    CAS  PubMed  Google Scholar 

  127. Z.Y. Wu et al., AMPA receptors regulate exocytosis and insulin release in pancreatic beta cells. Traffic 13(8), 1124–1139 (2012)

    CAS  PubMed  Google Scholar 

  128. C. Ludvigsen, M. McDaniel, P.E. Lacy, The mechanism of zinc uptake in isolated islets of Langerhans. Diabetes 28(6), 570–575 (1979)

    CAS  PubMed  Google Scholar 

  129. P.D. Borge et al., Insulin receptor signaling and sarco/endoplasmic reticulum calcium ATPase in beta-cells. Diabetes 51(Suppl 3), S427–S433 (2002)

    CAS  PubMed  Google Scholar 

  130. M. Braun, R. Ramracheya, P. Rorsman, Autocrine regulation of insulin secretion. Diabetes Obes. Metab. 14(Suppl 3), 143–151 (2012)

    CAS  PubMed  Google Scholar 

  131. Y. Lin, Z. Sun, Current views on type 2 diabetes. J. Endocrinol. 204(1), 1–11 (2012)

    Google Scholar 

  132. S. Jitrapakdee et al., Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53(6), 1019–1032 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  133. E. Zini et al., Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia 52(2), 336–346 (2009)

    CAS  PubMed  Google Scholar 

  134. P. Proks, J.D. Lippiat, Membrane ion channels and diabetes. Curr. Pharm. Des. 12(4), 485–501 (2006)

    CAS  PubMed  Google Scholar 

  135. M.D. Bosco et al., Zinc and zinc transporter regulation in pancreatic islets and the potential role of zinc in islet transplantation. Rev. Diabet. Stud. 7(4), 263–274 (2010)

    PubMed Central  PubMed  Google Scholar 

  136. A. Mathie et al., Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol. Ther. 111(3), 567–583 (2006)

    CAS  PubMed  Google Scholar 

  137. D.W. Barnett, D.M. Pressel, S. Misler, Voltage-dependent Na + and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch. 431(2), 272–282 (1995)

    CAS  PubMed  Google Scholar 

  138. A. Bloc et al., Zinc-induced changes in ionic currents of clonal rat pancreatic-cells: activation of ATP-sensitive K+ channels. J. Physiol. 529(Pt 3), 723–734 (2000)

    CAS  PubMed  Google Scholar 

  139. R. Ferrer et al., Effects of Zn2+ on glucose-induced electrical activity and insulin release from mouse pancreatic islets. Am. J. Physiol. 246(5 Pt 1), C520–C527 (1984)

    CAS  PubMed  Google Scholar 

  140. T. Ghafghazi, M.L. McDaniel, P.E. Lacy, Zinc-induced inhibition of insulin secretion from isolated rat islets of Langerhans. Diabetes 30(4), 341–345 (1981)

    CAS  PubMed  Google Scholar 

  141. V. Bancila et al., Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J. Neurochem. 90(5), 1243–1250 (2004)

    CAS  PubMed  Google Scholar 

  142. B. Holst et al., G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150(6), 2577–2585 (2009)

    CAS  PubMed  Google Scholar 

  143. P. Popovics, A.J. Stewart, GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell. Mol. Life Sci. 68(1), 85–95 (2011)

    CAS  PubMed  Google Scholar 

  144. M. Hutton, The effects of environmental lead exposure and in vitro zinc on tissue delta-aminolevulinic acid dehydratase in urban pigeons. Comp. Biochem. Physiol. C 74(2), 441–446 (1983)

    CAS  PubMed  Google Scholar 

  145. G.M. Grodsky, F. Schmid-Formby, Kinetic and quantitative relationships between insulin release and 65Zn efflux from perifused islets. Endocrinology 117(2), 704–710 (1985)

    CAS  PubMed  Google Scholar 

  146. B. Turan, Zinc-induced changes in ionic currents of cardiomyocytes. Biol. Trace Elem. Res. 94(1), 49–60 (2003)

    CAS  PubMed  Google Scholar 

  147. X.P. Chu et al., Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci. 24(40), 8678–8689 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  148. K.G. Slepchenko, C.B. James, Y.V. Li, Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting beta-cell line. Exp. Physiol. 98(8), 1301–1311 (2013)

    CAS  PubMed  Google Scholar 

  149. D. Baetens et al., Endocrine pancreas: three-dimensional reconstruction shows two types of islets of langerhans. Science 206(4424), 1323–1325 (1979)

    CAS  PubMed  Google Scholar 

  150. O. Cabrera et al., The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103(7), 2334–2339 (2006)

    CAS  PubMed  Google Scholar 

  151. M.A. Ravier, G.A. Rutter, Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54(6), 1789–1797 (2005)

    CAS  PubMed  Google Scholar 

  152. R. Ramracheya et al., Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 59(9), 2198–2208 (2010)

    CAS  PubMed  Google Scholar 

  153. B.A. Cooperberg, P.E. Cryer, Insulin reciprocally regulates glucagon secretion in humans. Diabetes 59(11), 2936–2940 (2010)

    CAS  PubMed  Google Scholar 

  154. M. Slucca et al., ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 59(1), 128–134 (2010)

    CAS  PubMed  Google Scholar 

  155. I. Franklin et al., Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54(6), 1808–1815 (2005)

    CAS  PubMed  Google Scholar 

  156. A.L. Prost et al., Zinc is both an intracellular and extracellular regulator of KATP channel function. J. Physiol. 559(Pt 1), 157–167 (2004)

    CAS  PubMed  Google Scholar 

  157. K.M. Hope et al., Regulation of alpha-cell function by the beta-cell in isolated human and rat islets deprived of glucose: the “switch-off” hypothesis. Diabetes 53(6), 1488–1495 (2004)

    CAS  PubMed  Google Scholar 

  158. J.C. Hutton, E.J. Penn, M. Peshavaria, Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem. J. 210(2), 297–305 (1983)

    CAS  PubMed  Google Scholar 

  159. J. Brandao-Neto et al., Renal handling of zinc in insulin-dependent diabetes mellitus patients. Biometals 14(1), 75–80 (2001)

    CAS  PubMed  Google Scholar 

  160. J.J. Cunningham et al., Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 43(12), 1558–1562 (1994)

    CAS  PubMed  Google Scholar 

  161. W.B. Kinlaw et al., Abnormal zinc metabolism in type II diabetes mellitus. Am. J. Med. 75(2), 273–277 (1983)

    CAS  PubMed  Google Scholar 

  162. E. Ho, C. Courtemanche, B.N. Ames, Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J. Nutr. 133(8), 2543–2548 (2003)

    CAS  PubMed  Google Scholar 

  163. E. Ho et al., Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp. Biol. Med. (Maywood) 226(2), 103–111 (2001)

    CAS  Google Scholar 

  164. A.B. Chausmer, Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17(2), 109–115 (1998)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Calvin James and Dr. Aili Guo for their advice and for careful reading of this manuscript, and specifically thanks Dr. Felicia Nowak for invitation and for commenting on the manuscript.

Disclosure

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang V. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.V. Zinc and insulin in pancreatic beta-cells. Endocrine 45, 178–189 (2014). https://doi.org/10.1007/s12020-013-0032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0032-x

Keywords

Navigation