Skip to main content

Advertisement

Log in

PTHrP Action on Skeletal Development: A Key for the Controlled Growth of Endochondral Bones

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Parathyroid hormone-related protein (PTHrP) was initially identified as a humoral factor that causes the humoral hypercalcemia of malignancies. PTHrP is expressed in tumors and a variety of tissues, acting on the formation and maintenance of these tissues in a paracrine manner. Skeletal formation is one of the notable developmental events in which PTHrP acts as a master regulator. During endochondral ossification, PTHrP is expressed in periarticular regions of fetal cartilage (also referred to as the growth plate) and the perichondrium, whereas the PTH/PTHrP receptor (PPR) is expressed strongly in pre-hypertrophic chondrocytes and weakly in columnar proliferating chondrocytes. Genetic studies have revealed that PTHrP-PPR signaling regulates the differentiation of chondrocytes to maintain a certain length of the growth plate via a negative feedback loop with Indian hedgehog (Ihh) expressed in pre-hypertrophic and hypertrophic chondrocytes. The Ihh-PTHrP negative feedback loop is central to the proper growth of endochondral skeletons. Ihh also exerts a PTHrP-independent function during endochondral ossification; it directly stimulates chondrocyte proliferation and differentiates progenitors into osteoblasts, the bone-forming cells. To further extend our knowledge of the Ihh-PTHrP negative feedback loop, we need to understand the gene regulatory network underlying the actions of PTHrP and Ihh through combinatorial approaches to genome-wide analyses and mouse genetics, which will open a new avenue for the application of the Ihh-PTHrP negative feedback system to the treatment of skeletal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach-Jagger H, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science. 1987;237(4817):893–6.

    Article  CAS  PubMed  Google Scholar 

  2. Stewart AF, Horst R, Deftos LJ, Cadman EC, Lang R, Broadus AE. Biochemical evaluation of patients with cancer-associated hypercalcemia—evidence for humoral and non-humoral groups. N Engl J Med. 1980;303(24):1376–83.

    Article  Google Scholar 

  3. Wysolmerski JJ. Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab. 2012;97(9):2947–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol. 1994;126(6):1611–23.

    Article  CAS  PubMed  Google Scholar 

  5. Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994;8(3):277–89.

    Article  CAS  PubMed  Google Scholar 

  6. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996;273(5275):663–6.

    Article  CAS  PubMed  Google Scholar 

  7. Lee K, Deeds JD, Segre GV. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology. 1995;136(2):453–63.

    CAS  PubMed  Google Scholar 

  8. Lee K, Lanske B, Karaplis AC, Deeds JD, Kohno H, Nissenson RA, et al. Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology. 1996;137(11):5109–18.

    CAS  PubMed  Google Scholar 

  9. Miao D, Liu H, Plut P, Niu M, Huo R, Goltzman D, et al. Impaired endochondral bone development and osteopenia in Gli2-deficient mice. Exp Cell Res. 2004;294(1):210–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA. 1996;93(26):15233–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA. 1996;93(19):10240–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schipani E, Lanske B, Hunzelman J, Luz A, Kovacs CS, Lee K, et al. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci USA. 1997;94(25):13689–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Philbrick WM, Dreyer BE, Nakchbandi IA, Karaplis AC. Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci USA. 1998;95(20):11846–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jansen M. Ueber atypische Chondrodystrophie (Achondroplasie) und ueber eine noch nicht beschriebene angeborene Wachstumsstoerung des Knochensystems: Metaphysaere Dysostosis. Z Orthop Chir. 1934;61:253–86.

    Google Scholar 

  15. Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science. 1995;268(5207):98–100.

    Article  CAS  PubMed  Google Scholar 

  16. Schipani E, Langman CB, Parfitt AM, Jensen GS, Kikuchi S, Kooh SW, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N Engl J Med. 1996;335(10):708–14.

    Article  CAS  PubMed  Google Scholar 

  17. Blomstrand S, Claesson I, Save-Soderbergh J. A case of lethal congenital dwarfism with accelerated skeletal maturation. Pediatr Radiol. 1985;15(2):141–3.

    Article  CAS  PubMed  Google Scholar 

  18. Karaplis AC, He B, Nguyen MT, Young ID, Semeraro D, Ozawa H, et al. Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chondrodysplasia. Endocrinology. 1998;139(12):5255–8.

    Article  CAS  PubMed  Google Scholar 

  19. Jobert AS, Zhang P, Couvineau A, Bonaventure J, Roume J, Le Merrer M, et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J Clin Invest. 1998;102(1):34–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhang P, Jobert AS, Couvineau A, Silve C. A homozygous inactivating mutation in the parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia. J Clin Endocrinol Metab. 1998;83(9):3365–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hirai T, Chagin AS, Kobayashi T, Mackem S, Kronenberg HM. Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life. Proc Natl Acad Sci USA. 2011;108(1):191–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Miao D, Su H, He B, Gao J, Xia Q, Zhu M, et al. Severe growth retardation and early lethality in mice lacking the nuclear localization sequence and C-terminus of PTH-related protein. Proc Natl Acad Sci USA. 2008;105(51):20309–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Toribio RE, Brown HA, Novince CM, Marlow B, Hernon K, Lanigan LG, et al. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. FASEB J. 2010;24(6):1947–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.

    Article  CAS  PubMed  Google Scholar 

  25. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273(5275):613–22.

    Article  CAS  PubMed  Google Scholar 

  26. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mak KK, Chen MH, Day TF, Chuang PT, Yang Y. Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development. 2006;133(18):3695–707.

    Article  CAS  PubMed  Google Scholar 

  28. Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and—independent pathways. Development. 2000;127(3):543–8.

    CAS  PubMed  Google Scholar 

  29. Chung UI, Lanske B, Lee K, Li E, Kronenberg H. The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA. 1998;95(22):13030–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chung UI, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest. 2001;107(3):295–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hilton MJ, Tu X, Long F. Tamoxifen-inducible gene deletion reveals a distinct cell type associated with trabecular bone, and direct regulation of PTHrP expression and chondrocyte morphology by Ihh in growth region cartilage. Dev Biol. 2007;308(1):93–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kawakami T, Kawcak T, Li YJ, Zhang W, Hu Y, Chuang PT. Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development. 2002;129(24):5753–65.

    Article  CAS  PubMed  Google Scholar 

  33. Tsiairis CD, McMahon AP. Disp1 regulates growth of mammalian long bones through the control of Ihh distribution. Dev Biol. 2008;317(2):480–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sanders TA, Llagostera E, Barna M. Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature. 2013;497(7451):628–32.

    Article  CAS  PubMed  Google Scholar 

  35. McMahon AP, Hasso SM. Filopodia: the cellular quills of hedgehog signaling? Dev Cell. 2013;25(4):328–30.

    Article  CAS  PubMed  Google Scholar 

  36. Juppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science. 1991;254(5034):1024–6.

    Article  CAS  PubMed  Google Scholar 

  37. Abou-Samra AB, Juppner H, Force T, Freeman MW, Kong XF, Schipani E, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA. 1992;89(7):2732–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev. 2001;22(5):675–705.

    CAS  PubMed  Google Scholar 

  39. Levine MA. Clinical implications of genetic defects in G proteins: oncogenic mutations in G alpha s as the molecular basis for the McCune–Albright syndrome. Arch Med Res. 1999;30(6):522–31.

    Article  CAS  PubMed  Google Scholar 

  40. Yu S, Yu D, Lee E, Eckhaus M, Lee R, Corria Z, et al. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsalpha) knockout mice is due to tissue-specific imprinting of the gsalpha gene. Proc Natl Acad Sci USA. 1998;95(15):8715–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Bastepe M, Weinstein LS, Ogata N, Kawaguchi H, Juppner H, Kronenberg HM, et al. Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage in vivo. Proc Natl Acad Sci USA. 2004;101(41):14794–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sakamoto A, Chen M, Kobayashi T, Kronenberg HM, Weinstein LS. Chondrocyte-specific knockout of the G protein G(s)alpha leads to epiphyseal and growth plate abnormalities and ectopic chondrocyte formation. J Bone Miner Res. 2005;20(4):663–71.

    Article  CAS  PubMed  Google Scholar 

  43. Guo J, Chung UI, Kondo H, Bringhurst FR, Kronenberg HM. The PTH/PTHrP receptor can delay chondrocyte hypertrophy in vivo without activating phospholipase C. Dev Cell. 2002;3(2):183–94.

    Article  CAS  PubMed  Google Scholar 

  44. Guo J, Iida-Klein A, Huang X, Abou-Samra AB, Segre GV, Bringhurst FR. Parathyroid hormone (PTH)/PTH-related peptide receptor density modulates activation of phospholipase C and phosphate transport by PTH in LLC-PK1 cells. Endocrinology. 1995;136(9):3884–91.

    CAS  PubMed  Google Scholar 

  45. Huang W, Chung UI, Kronenberg HM, de Crombrugghe B. The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci USA. 2001;98(1):160–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Guo J, Chung UI, Yang D, Karsenty G, Bringhurst FR, Kronenberg HM. PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev Biol. 2006;292(1):116–28.

    Article  CAS  PubMed  Google Scholar 

  47. Li TF, Dong Y, Ionescu AM, Rosier RN, Zuscik MJ, Schwarz EM, et al. Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Exp Cell Res. 2004;299(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  48. Ionescu AM, Schwarz EM, Vinson C, Puzas JE, Rosier R, Reynolds PR, et al. PTHrP modulates chondrocyte differentiation through AP-1 and CREB signaling. J Biol Chem. 2001;276(15):11639–47.

    Article  CAS  PubMed  Google Scholar 

  49. Long F, Schipani E, Asahara H, Kronenberg H, Montminy M. The CREB family of activators is required for endochondral bone development. Development. 2001;128(4):541–50.

    CAS  PubMed  Google Scholar 

  50. Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature. 1997;387(6629):151–8.

    Article  CAS  PubMed  Google Scholar 

  51. MacLean HE, Guo J, Knight MC, Zhang P, Cobrinik D, Kronenberg HM. The cyclin-dependent kinase inhibitor p57(Kip2) mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest. 2004;113(9):1334–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Provot S, Kempf H, Murtaugh LC, Chung UI, Kim DW, Chyung J, et al. Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development. 2006;133(4):651–62.

    Article  CAS  PubMed  Google Scholar 

  53. Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell. 2007;12(3):377–89.

    Article  CAS  PubMed  Google Scholar 

  54. Kozhemyakina E, Cohen T, Yao TP, Lassar AB. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol Cell Biol. 2009;29(21):5751–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004;119(4):555–66.

    Article  CAS  PubMed  Google Scholar 

  56. Correa D, Hesse E, Seriwatanachai D, Kiviranta R, Saito H, Yamana K, et al. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell. 2010;19(4):533–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Seriwatanachai D, Densmore MJ, Sato T, Correa D, Neff L, Baron R, et al. Deletion of Zfp521 rescues the growth plate phenotype in a mouse model of Jansen metaphyseal chondrodysplasia. FASEB J. 2011;25(9):3057–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Long F, Zhang XM, Karp S, Yang Y, McMahon AP. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development. 2001;128(24):5099–108.

    CAS  PubMed  Google Scholar 

  59. Kobayashi T, Chung UI, Schipani E, Starbuck M, Karsenty G, Katagiri T, et al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development. 2002;129(12):2977–86.

    CAS  PubMed  Google Scholar 

  60. Kobayashi T, Soegiarto DW, Yang Y, Lanske B, Schipani E, McMahon AP, et al. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest. 2005;115(7):1734–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mak KK, Kronenberg HM, Chuang PT, Mackem S, Yang Y. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development. 2008;135(11):1947–56.

    Article  CAS  PubMed  Google Scholar 

  62. Hilton MJ, Tu X, Cook J, Hu H, Long F. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development. 2005;132(19):4339–51.

    Article  CAS  PubMed  Google Scholar 

  63. Koziel L, Wuelling M, Schneider S, Vortkamp A. Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development. 2005;132(23):5249–60.

    Article  CAS  PubMed  Google Scholar 

  64. Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development. 2000;127(8):1593–605.

    CAS  PubMed  Google Scholar 

  65. Hojo H, Ohba S, Yano F, Saito T, Ikeda T, Nakajima K, et al. Gli1 protein participates in hedgehog-mediated specification of osteoblast lineage during endochondral ossification. J Biol Chem. 2012;287(21):17860–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Hojo H, Ohba S, Taniguchi K, Shirai M, Yano F, Saito T, et al. Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem. 2013;288(14):9924–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development. 2004;131(6):1309–18.

    Article  CAS  PubMed  Google Scholar 

  68. Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133(16):3231–44.

    Article  CAS  PubMed  Google Scholar 

  69. Maeda Y, Nakamura E, Nguyen MT, Suva LJ, Swain FL, Razzaque MS, et al. Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proc Natl Acad Sci USA. 2007;104:6382–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Ohba S, Kawaguchi H, Kugimiya F, Ogasawara T, Kawamura N, Saito T, et al. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev Cell. 2008;14(5):689–99.

    Article  CAS  PubMed  Google Scholar 

  71. Mak KK, Bi Y, Wan C, Chuang PT, Clemens T, Young M, et al. Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev Cell. 2008;14(5):674–88.

    Article  CAS  PubMed  Google Scholar 

  72. Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8(5):727–38.

    Article  CAS  PubMed  Google Scholar 

  73. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005;132(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  74. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50.

    Article  CAS  PubMed  Google Scholar 

  75. Colnot C, de la Fuente L, Huang S, Hu D, Lu CY, St-Jacques B, et al. Indian hedgehog synchronizes skeletal angiogenesis and perichondrial maturation with cartilage development. Development. 2005;132(5):1057–67.

    Article  CAS  PubMed  Google Scholar 

  76. Shimoyama A, Wada M, Ikeda F, Hata K, Matsubara T, Nifuji A, et al. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Mol Biol Cell. 2007;18(7):2411–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Joeng KS, Long FX. The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development. 2009;136(24):4177–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Tu X, Joeng KS, Long F. Indian hedgehog requires additional effectors besides Runx2 to induce osteoblast differentiation. Dev Biol. 2012;362(1):76–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Chung-Ohba laboratory for the helpful discussions and N. Nagumo, H. Kobayashi, and K. Morii for the administrative assistance.

Disclosures

Conflict of interest

Shinsuke Ohba and Ung-il Chung declare that they have no conflict of interest.

Animal/Human Studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Ohba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohba, S., Chung, Ui. PTHrP Action on Skeletal Development: A Key for the Controlled Growth of Endochondral Bones. Clinic Rev Bone Miner Metab 12, 130–141 (2014). https://doi.org/10.1007/s12018-014-9161-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-014-9161-x

Keywords

Navigation