Skip to main content

Advertisement

Log in

The Aging Skeleton: Differences Between HIV-Infected Patients and the Uninfected Aging Population

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

In the past 10 years, a great attention has been given to bone metabolism impairment in patients with human immunodeficiency virus (HIV) as a specific organ damage associated with long-term toxicities of antiretroviral therapy. More recently, this issue has been better contextualized in the setting of the overlapping epidemic between HIV and aging. The objective of this review is to describe the aging skeleton as a paradigm of the biological aging process affecting patients with HIV infection. An increased prevalence of osteoporosis and osteopenia has been reported in both men and women infected with HIV, but the mechanism and consequences of these changes are not fully understood. Cohort studies have reported controversial data regarding the increase in fracture rates affecting HIV-infected patients compared with controls. Major determinants of bone mineral density changes over time include antiretroviral therapy exposure, body mass index, and lifestyle. Low CD4 cell count has been associated with fracture risk, suggesting that chronic immune activation and persistent inflammation may play an important role in bone demineralization and fracture development. Whether these findings will apply particularly to older HIV-infected people, who experience a higher chronic inflammation burden and are at highest risk of fragility fractures, is unknown. Definitively, the care of patients with HIV is becoming more complex as patients grow older and confront unique challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Exton-Smith AN, Millard PH, Payne PR, Wheeler EF. Pattern of development and loss of bone with age. Lancet. 1969;2(7631):1154–7.

    Article  PubMed  CAS  Google Scholar 

  2. Firooznia H, Golimbu C, Rafii M, Schwartz MS, Alterman ER. Quantitative computed tomography assessment of spinal trabecular bone. I. Age-related regression in normal men and women. J Comput Tomogr. 1984;8(2):91–7.

    Article  PubMed  CAS  Google Scholar 

  3. Orwoll ES, Klein RF. Osteoporosis in men. Endocr Rev. 1995;16(1):87–116.

    PubMed  CAS  Google Scholar 

  4. Garn SM. The course of bone gain and the phases of bone loss. Orthop Clin North Am. 1972;3(3):503–20.

    PubMed  CAS  Google Scholar 

  5. Hamdy RC, Anderson JS, Whalen KE, Harvill LM. Regional differences in bone density of young men involved in different exercises. Med Sci Sports Exerc. 1994;26(7):884–8.

    PubMed  CAS  Google Scholar 

  6. Johnston CC Jr, Slemenda CW. Pathogenesis of osteoporosis. Bone. 1995;17(2 Suppl):19S–22S.

    Article  PubMed  CAS  Google Scholar 

  7. Stevenson JC, Lees B, Devenport M, Cust MP, Ganger KF. Determinants of bone density in normal women: risk factors for future osteoporosis? BMJ. 1989;298(6678):924–8.

    Article  PubMed  CAS  Google Scholar 

  8. Hansson T, Roos B. The influence of age, height, and weight on the bone mineral content of lumbar vertebrae. Spine (Phila Pa 1976). 1980;5(6):545–51.

    Article  CAS  Google Scholar 

  9. Krolner B, Pors Nielsen S. Bone mineral content of the lumbar spine in normal and osteoporotic women: cross-sectional and longitudinal studies. Clin Sci (Lond). 1982;62(3):329–36.

    CAS  Google Scholar 

  10. Meunier P, Courpron P, Edouard C, Bernard J, Bringuier J, Vignon G. Physiological senile involution and pathological rarefaction of bone. Quantitative and comparative histological data. Clin Endocrinol Metab. 1973;2(2):239–56.

    Article  PubMed  CAS  Google Scholar 

  11. Nilas L, Christiansen C. Rates of bone loss in normal women: evidence of accelerated trabecular bone loss after the menopause. Eur J Clin Invest. 1988;18(5):529–34.

    Article  PubMed  CAS  Google Scholar 

  12. Smith DM, Khairi MR, Norton J, Johnston CC Jr. Age and activity effects on rate of bone mineral loss. J Clin Invest. 1976;58(3):716–21.

    Article  PubMed  CAS  Google Scholar 

  13. Stepan JJ, Pospichal J, Presl J, Pacovsky V. Bone loss and biochemical indices of bone remodeling in surgically induced postmenopausal women. Bone. 1987;8(5):279–84.

    Article  PubMed  CAS  Google Scholar 

  14. Mazess RB. On aging bone loss. Clin Orthop Relat Res. 1982;165:239–52.

    PubMed  Google Scholar 

  15. Wasnich RD. Epidemiology of osteoporosis in the United States of America. Osteoporos Int. 1997;7(Suppl 3):S68–72.

    Article  PubMed  Google Scholar 

  16. Compston. Figure 2.2—EU report osteoporosis 1998. Available at http://ec.europa.eu/health/reports/publications/eu-report-1998.pdf (1994). Accessed on 14 Nov 2011.

  17. Centers for Disease Control and Prevention: HIV/topics: persons aged 50 and older. Available at http://www.cdc.gov/hiv/topics/over50/ (2011). Accessed on 10 Nov 2011.

  18. May M, Gompels M, Delpech V, Porter K, Post F, Johnson M, et al. Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK collaborative HIV cohort (UK CHIC) study. BMJ. 2011;343:d6016.

    Article  PubMed  Google Scholar 

  19. Zwahlen M, Harris R, May M, Hogg R, Costagliola D, de Wolf F, et al. Mortality of HIV-infected patients starting potent antiretroviral therapy: comparison with the general population in nine industrialized countries. Int J Epidemiol. 2009;38(6):1624–33.

    Article  PubMed  Google Scholar 

  20. Levin J. Changing patterns of causes of death in the swiss HIV cohort study (SHCS) 2005–2009. http://www.natap.org/2011/CROI/croi_62.htm (2011). Accessed on 10 Nov 2011.

  21. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis. 2011;53(11):1120–6.

    Article  PubMed  Google Scholar 

  22. Phillips AN, Neaton J, Lundgren JD. The role of HIV in serious diseases other than AIDS. AIDS. 2008;22(18):2409–18.

    Article  PubMed  Google Scholar 

  23. Deeks SG, Phillips AN. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ. 2009;338:a3172.

    Article  PubMed  Google Scholar 

  24. Mascolini M. HCV in HIV-positives raises osteoporotic fracture risk over 40%. Available at http://www.natap.org/2010/IAS/IAS_20.htm. Accessed on 14 Nov 2011.

  25. Tebas P, Powderly WG, Claxton S, Marin D, Tantisiriwat W, Teitelbaum SL, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. Aids. 2000;14(4):F63–7.

    Article  PubMed  CAS  Google Scholar 

  26. Carr A, Miller J, Eisman JA, Cooper DA. Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. Aids. 2001;15(6):703–9.

    Article  PubMed  CAS  Google Scholar 

  27. Gold J, Pocock N, Li Y. Bone mineral density abnormalities in patients with HIV infection. J Acquir Immune Defic Syndr. 2002;30(1):131–2.

    PubMed  Google Scholar 

  28. Mondy K, Yarasheski K, Powderly WG, Whyte M, Claxton S, DeMarco D, et al. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals. Clin Infect Dis. 2003;36(4):482–90.

    Article  PubMed  Google Scholar 

  29. Bongiovanni M, Fausto A, Cicconi P, Menicagli L, Melzi S, Ligabo VE, et al. Osteoporosis in HIV-infected subjects: a combined effect of highly active antiretroviral therapy and HIV itself? J Acquir Immune Defic Syndr. 2005;40(4):503–4.

    Article  PubMed  Google Scholar 

  30. Cazanave C, Dupon M, Lavignolle-Aurillac V, Barthe N, Lawson-Ayayi S, Mehsen N, et al. Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. Aids. 2008;22(3):395–402.

    Article  PubMed  Google Scholar 

  31. Rivas P, Gorgolas M, Garcia-Delgado R, Diaz-Curiel M, Goyenechea A, Fernandez-Guerrero ML. Evolution of bone mineral density in AIDS patients on treatment with zidovudine/lamivudine plus abacavir or lopinavir/ritonavir. HIV Med. 2008;9(2):89–95.

    Article  PubMed  CAS  Google Scholar 

  32. Brown TT, Qaqish RB. Response to Berg et al. ‘Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review’. Aids. 2007;21(13):1830–1.

    Article  PubMed  Google Scholar 

  33. Bolland MJ, Wang TK, Grey A, Gamble GD, Reid IR. Stable bone density in HAART-treated individuals with HIV: a meta-analysis. J Clin Endocrinol Metab. 2011;96(9):2721–31.

    Article  PubMed  CAS  Google Scholar 

  34. Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, Miller MD, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA. 2004;292(2):191–201.

    Article  PubMed  CAS  Google Scholar 

  35. Pan G, Yang Z, Ballinger SW, McDonald JM. Pathogenesis of osteopenia/osteoporosis induced by highly active anti-retroviral therapy for AIDS. Ann N Y Acad Sci. 2006;1068:297–308.

    Article  PubMed  CAS  Google Scholar 

  36. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. Aids. 2006;20(17):2165–74.

    Article  PubMed  Google Scholar 

  37. Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. Aids. 2009;23(7):817–24.

    Article  PubMed  Google Scholar 

  38. Wang GC, Kao WH, Murakami P, Xue QL, Chiou RB, Detrick B, et al. Cytomegalovirus infection and the risk of mortality and frailty in older women: a prospective observational cohort study. Am J Epidemiol. 2010;171(10):1144–52.

    Article  PubMed  Google Scholar 

  39. Piliero PJ, Gianoukakis AG. Ritonavir-associated hyperparathyroidism, osteopenia and bone pain. Aids. 2002;16(11):1565–6.

    Article  PubMed  Google Scholar 

  40. Grund B, Peng G, Gibert CL, Hoy JF, Isaksson RL, Shlay JC, et al. Continuous antiretroviral therapy decreases bone mineral density. Aids. 2009;23(12):1519–29.

    Article  PubMed  CAS  Google Scholar 

  41. Mulligan, Glidden, Gonzales. Effects of FTC/TDF on bone mineral density in seronegative men from 4 continents: DEXA results of the global iPrEx study. Available at http://www.retroconference.org/2011/Abstracts/42550.htm (2011). Accessed on 14 Nov 2011.

  42. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham osteoporosis study. J Bone Miner Res. 2000;15(4):710–20.

    Article  PubMed  CAS  Google Scholar 

  43. Wu F, Ames R, Clearwater J, Evans MC, Gamble G, Reid IR. Prospective 10-year study of the determinants of bone density and bone loss in normal postmenopausal women, including the effect of hormone replacement therapy. Clin Endocrinol (Oxf). 2002;56(6):703–11.

    Article  CAS  Google Scholar 

  44. Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31(5):547–55.

    Article  PubMed  CAS  Google Scholar 

  45. Villareal DT, Fontana L, Weiss EP, Racette SB, Steger-May K, Schechtman KB, et al. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med. 2006;166(22):2502–10.

    Article  PubMed  Google Scholar 

  46. Borderi M, Gibellini D, Vescini F, De Crignis E, Cimatti L, Biagetti C, et al. Metabolic bone disease in HIV infection. Aids. 2009;23(11):1297–310.

    Article  PubMed  Google Scholar 

  47. Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15(6):993–1000.

    Article  PubMed  Google Scholar 

  48. Sharma A, Flom PL, Weedon J, Klein RS. Prospective study of bone mineral density changes in aging men with or at risk for HIV infection. Aids. 2010;1:2337–45.

    Google Scholar 

  49. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Lo Y, Klein RS. Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. Aids. 2007;21(5):617–23.

    Article  PubMed  Google Scholar 

  50. Yin MT, Shi Q, Hoover DR, Anastos K, Sharma A, Young M, et al. Fracture incidence in HIV-infected women: results from the women’s interagency HIV study. Aids. 2010;24(17):2679–86.

    Article  PubMed  Google Scholar 

  51. Collin F, Duval X, Le Moing V, Piroth L, Al Kaied F, Massip P, et al. Ten-year incidence and risk factors of bone fractures in a cohort of treated HIV1-infected adults. Aids. 2009;23(8):1021–4.

    Article  PubMed  Google Scholar 

  52. Prior J, Burdge D, Maan E, Milner R, Hankins C, Klein M, et al. Fragility fractures and bone mineral density in HIV positive women: a case-control population-based study. Osteoporos Int. 2007;18(10):1345–53.

    Article  PubMed  CAS  Google Scholar 

  53. Guaraldi G, Ventura P, Albuzza M, Orlando G, Bedini A, Amorico G, et al. Pathological fractures in AIDS patients with osteopenia and osteoporosis induced by antiretroviral therapy. Aids. 2001;15(1):137–8.

    Article  PubMed  CAS  Google Scholar 

  54. Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499–504.

    Article  PubMed  CAS  Google Scholar 

  55. Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, Gulanski B, et al. Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS ONE. 2011;6(2):e17217.

    Article  PubMed  CAS  Google Scholar 

  56. Thomas J, Doherty SM. HIV infection–a risk factor for osteoporosis. J Acquir Immune Defic Syndr. 2003;33(3):281–91.

    Article  PubMed  CAS  Google Scholar 

  57. Aukrust P, Haug CJ, Ueland T, Lien E, Muller F, Espevik T, et al. Decreased bone formative and enhanced resorptive markers in human immunodeficiency virus infection: indication of normalization of the bone-remodeling process during highly active antiretroviral therapy. J Clin Endocrinol Metab. 1999;84(1):145–50.

    Article  PubMed  CAS  Google Scholar 

  58. Lahdevirta J, Maury CP, Teppo AM, Repo H. Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome. Am J Med. 1988;85(3):289–91.

    Article  PubMed  CAS  Google Scholar 

  59. Ledru E, Christeff N, Patey O, de Truchis P, Melchior JC, Gougeon ML. Alteration of tumor necrosis factor-alpha T-cell homeostasis following potent antiretroviral therapy: contribution to the development of human immunodeficiency virus-associated lipodystrophy syndrome. Blood. 2000;95(10):3191–8.

    PubMed  CAS  Google Scholar 

  60. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9.

    Article  PubMed  CAS  Google Scholar 

  61. Yong MK, Elliott JH, Woolley IJ, Hoy JF. Low CD4 count is associated with an increased risk of fragility fracture in HIV-infected patients. J Acquir Immune Defic Syndr. 2011;57(3):205–10.

    Article  PubMed  Google Scholar 

  62. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V. Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab. 2004;89(9):4246–53.

    Article  PubMed  CAS  Google Scholar 

  63. von der Recke P, Hansen MA, Hassager C. The association between low bone mass at the menopause and cardiovascular mortality. Am J Med. 1999;106(3):273–8.

    Article  PubMed  Google Scholar 

  64. Kado DM, Browner WS, Blackwell T, Gore R, Cummings SR. Rate of bone loss is associated with mortality in older women: a prospective study. J Bone Miner Res. 2000;15(10):1974–80.

    Article  PubMed  CAS  Google Scholar 

  65. Tanko LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res. 2005;20(11):1912–20.

    Article  PubMed  Google Scholar 

  66. Mussolino ME, Madans JH, Gillum RF. Bone mineral density and mortality in women and men: the NHANES I epidemiologic follow-up study. Ann Epidemiol. 2003;13(10):692–7.

    Article  PubMed  Google Scholar 

  67. Magnus JH, Broussard DL. Relationship between bone mineral density and myocardial infarction in US adults. Osteoporos Int. 2005;16(12):2053–62.

    Article  PubMed  Google Scholar 

  68. Turker S, Karatosun V, Gunal I. Beta-blockers increase bone mineral density. Clin Orthop Relat Res. 2006;443:73–4.

    Article  PubMed  Google Scholar 

  69. Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, et al. Beta-blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res. 2005;20(4):613–8.

    Article  PubMed  CAS  Google Scholar 

  70. Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong osteoporosis study. J Bone Miner Res. 2004;19(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  71. Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA. 2004;292(11):1326–32.

    Article  PubMed  CAS  Google Scholar 

  72. Nitta K, Akiba T, Suzuki K, Uchida K, Watanabe R, Majima K, et al. Effects of cyclic intermittent etidronate therapy on coronary artery calcification in patients receiving long-term hemodialysis. Am J Kidney Dis. 2004;44(4):680–8.

    PubMed  CAS  Google Scholar 

  73. Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691.

    Article  PubMed  Google Scholar 

  74. Raggi P, James G, Burke SK, Bommer J, Chasan-Taber S, Holzer H, et al. Decrease in thoracic vertebral bone attenuation with calcium-based phosphate binders in hemodialysis. J Bone Miner Res. 2005;20(5):764–72.

    Article  PubMed  CAS  Google Scholar 

  75. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10–7.

    Article  PubMed  CAS  Google Scholar 

  76. Li X, Yang HY, Giachelli CM. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res. 2006;98(7):905–12.

    Article  PubMed  CAS  Google Scholar 

  77. Raggi P, Giachelli C, Bellasi A. Interaction of vascular and bone disease in patients with normal renal function and patients undergoing dialysis. Nat Clin Pract Cardiovasc Med. 2007;4(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  78. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  PubMed  CAS  Google Scholar 

  79. Conde DM, Silva ET, Amaral WN, Finotti MF, Ferreira RG, Costa-Paiva L, et al. HIV, reproductive aging, and health implications in women: a literature review. Menopause. 2009;16(1):199–213.

    Article  PubMed  Google Scholar 

  80. Clark RA, Cohn SE, Jarek C, Craven KS, Lyons C, Jacobson M, et al. Perimenopausal symptomatology among HIV-infected women at least 40 years of age. J Acquir Immune Defic Syndr. 2000;23(1):99–100.

    PubMed  CAS  Google Scholar 

  81. Ferreira CE, Pinto-Neto AM, Conde DM, Costa-Paiva L, Morais SS, Magalhaes J. Menopause symptoms in women infected with HIV: prevalence and associated factors. Gynecol Endocrinol. 2007;23(4):198–205.

    Article  PubMed  Google Scholar 

  82. Schoenbaum EE, Hartel D, Lo Y, Howard AA, Floris-Moore M, Arnsten JH, et al. HIV infection, drug use, and onset of natural menopause. Clin Infect Dis. 2005;41(10):1517–24.

    Article  PubMed  Google Scholar 

  83. Cejtin H, Kim S, Taylor RN. Menopause in women in the women’s interagency HIV study (WIHS). In: XV international AIDS conference. Bangkok, Thailand; 2004.

  84. Santoro N, Fan M, Maslow B, Schoenbaum E. Women and HIV infection: the makings of a midlife crisis. Maturitas. 2009;64(3):160–4.

    Article  PubMed  Google Scholar 

  85. Sharma A, Cohen HW, Freeman R, Santoro N, Schoenbaum EE. Prospective evaluation of bone mineral density among middle-aged HIV-infected and uninfected women: association between methadone use and bone loss. Maturitas. 2011;70(3):295–301.

    Article  PubMed  Google Scholar 

  86. Yin MT, McMahon DJ, Ferris DC, Zhang CA, Shu A, Staron R, et al. Low bone mass and high bone turnover in postmenopausal human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2009;95(2):620–9.

    Article  PubMed  Google Scholar 

  87. Stein EM, Yin MT, McMahon DJ, Shu A, Zhang CA, Ferris DC, et al. Vitamin D deficiency in HIV-infected postmenopausal Hispanic and African-American women. Osteoporos Int. 2010;22(2):477–87.

    Article  PubMed  Google Scholar 

  88. FRAX® algorithms. Available at http://www.shef.ac.uk/FRAX. Accessed on 14 Nov 2011.

  89. Eacs guidelines. Available at http://www.europeanaidsclinicalsociety.org/images/stories/EACS-Pdf/eacsguidelines-6.pdf. Accessed on 14 Nov 2011.

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Guaraldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guaraldi, G., Santoro, A. & da Silva, A.R.D. The Aging Skeleton: Differences Between HIV-Infected Patients and the Uninfected Aging Population. Clinic Rev Bone Miner Metab 10, 257–265 (2012). https://doi.org/10.1007/s12018-012-9138-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-012-9138-6

Keywords

Navigation