Skip to main content

Advertisement

Log in

The Role of Vitamin D Deficiency in the Pathogenesis of Osteoporosis and in the Modulation of the Immune System in HIV-Infected Patients

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Vitamin D deficiency is widespread among HIV-infected adults and children. Vitamin D deficiency may contribute to the risk of developing the long-term complications of HIV infection, such as osteoporosis. Vitamin D is also known to play an important role in the immune system and may affect HIV disease progression and/or CD4 cell counts. This article will review the current data on the role of vitamin D deficiency in the pathogenesis of osteoporosis and in the modulation of the immune system in HIV-infected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review [see comment]. AIDS. 2006;20(17):2165–74.

    Article  PubMed  Google Scholar 

  2. Mora S, et al. Bone mineral loss through increased bone turnover in HIV-infected children treated with highly active antiretroviral therapy. AIDS. 2001;15(14):1823–9.

    Article  PubMed  CAS  Google Scholar 

  3. O’Brien KO, et al. Bone mineral content in girls perinatally infected with HIV. Am J Clin Nutr. 2001;73(4):821–6.

    PubMed  Google Scholar 

  4. Mehta S, et al. Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. PLoS ONE. 2010;5(1):e8770.

    Article  PubMed  Google Scholar 

  5. Mehta S, et al. Perinatal outcomes, including mother-to-child transmission of HIV, and child mortality and their association with maternal vitamin D status in Tanzania. J Infect Dis. 2009;200(7):1022–30.

    Article  PubMed  CAS  Google Scholar 

  6. Viard JP, et al. Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. AIDS. 2011;25(10):1305–15.

    Article  PubMed  CAS  Google Scholar 

  7. Campbell GR, Spector SA. Hormonally active vitamin D3 (1alpha,25-dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. J Biol Chem. 2011;286(21):18890–902.

    Article  PubMed  CAS  Google Scholar 

  8. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  PubMed  CAS  Google Scholar 

  9. Holick MF. Optimal vitamin D status for the prevention and treatment of osteoporosis. Drugs Aging. 2007;24(12):1017–29.

    Article  PubMed  CAS  Google Scholar 

  10. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–72.

    Article  PubMed  CAS  Google Scholar 

  11. Rosen CJ. Clinical practice. Vitamin D insufficiency. N Engl J Med. 2011;364(3):248–54.

    Article  PubMed  CAS  Google Scholar 

  12. Holick MF. Perspective on the impact of weightlessness on calcium and bone metabolism. Bone. 1998;22(5 Suppl):105S–11S.

    Article  PubMed  CAS  Google Scholar 

  13. Thomas MK, et al. Hypovitaminosis D in medical inpatients. N Engl J Med. 1998;338(12):777–83.

    Article  PubMed  CAS  Google Scholar 

  14. Holick MF, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  PubMed  CAS  Google Scholar 

  15. Institute of Medicine (U.S.). Dietary reference intakes for calcium and vitamin D. The National Academies Press, Washington, DC. 2011.

  16. Van Den Bout-Van Den Beukel CJ, et al. Vitamin D deficiency among HIV type 1-infected individuals in the Netherlands: effects of antiretroviral therapy. AIDS Res Hum Retroviruses. 2008;24(11):1375–82.

    Article  Google Scholar 

  17. Mueller NJ, et al. High prevalence of severe vitamin D deficiency in combined antiretroviral therapy-naive and successfully treated Swiss HIV patients. AIDS. 2010;24(8):1127–34.

    Article  PubMed  CAS  Google Scholar 

  18. Ross A, et al. Traditional risk factors overshadow HIV-related factors in predicting vitamin D deficiency in HIV-infected children and young adults (abstract O-10). In 13th International Workshop on Adverse Drug Reactions and Co-morbidities in HIV 2011. Rome, Italy.

  19. Rodriguez M, et al. High frequency of vitamin D deficiency in ambulatory HIV-Positive patients. AIDS Res Hum Retroviruses. 2009;25(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  20. Stein EM, et al. Vitamin D deficiency in HIV-infected postmenopausal Hispanic and African-American women. Osteoporos Int. 2011;22(2):477–87.

    Article  PubMed  CAS  Google Scholar 

  21. Welz T, et al. Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. AIDS. 2010;24(12):1923–8.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia Aparicio AM, et al. Abnormalities in the bone mineral metabolism in HIV-infected patients. Clin Rheumatol. 2006;25(4):537–9.

    Article  PubMed  CAS  Google Scholar 

  23. Stephensen CB, et al. Vitamin D status in adolescents and young adults with HIV infection. Am J Clin Nutr. 2006;83(5):1135–41.

    PubMed  CAS  Google Scholar 

  24. Ross AC, et al. Vitamin D is linked to carotid intima-media thickness and immune reconstitution in HIV-positive individuals. Antivir Ther. 2011;16(4):555–63.

    Article  PubMed  CAS  Google Scholar 

  25. Rutstein R, et al. Vitamin D status in children and young adults with perinatally acquired HIV infection. Clin Nutr. 2011;30(5):624–8.

    Article  PubMed  CAS  Google Scholar 

  26. Dao CN, et al. Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clin Infect Dis. 2011;52(3):396–405.

    Article  PubMed  CAS  Google Scholar 

  27. Haug C, et al. Subnormal serum concentration of 1,25-vitamin D in human immunodeficiency virus infection: correlation with degree of immune deficiency and survival. J Infect Dis. 1994;169(4):889–93.

    Article  PubMed  CAS  Google Scholar 

  28. Atkinson S, et al. Vitamin D deficiency in children with perinatally acquired HIV-1 infection living in the UK (abstract P159). In British HIV Association 2010. Manchester, UK.

  29. Brown TT, McComsey GA. Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. Antivir Ther. 2010;15(3):425–9.

    Article  PubMed  CAS  Google Scholar 

  30. Longenecker C, et al. Vitamin D supplementation and endothelial function among vitamin D deficient HIV-infected persons: a randomized placebo-controlled trial. Antiviral Therapy (in press).

  31. Wohl D, et al. Change in vitamin D levels smaller and risk of development of severe vitamin D deficiency lower among HIV-1-infected, treatment-naïve adults receiving TMC278 compared with EFV: 48-week results from the phase III ECHO trial (abstract 79LB). In 18th Conference on Retroviruses and Opportunistic Infections 2011. Boston, MA.

  32. Cozzolino M, et al. HIV-protease inhibitors impair vitamin D bioactivation to 1,25-dihydroxyvitamin D. AIDS. 2003;17(4):513–20.

    Article  PubMed  CAS  Google Scholar 

  33. Gyllensten K, et al. Severe vitamin D deficiency diagnosed after introduction of antiretroviral therapy including efavirenz in a patient living at latitude 59 degrees N. AIDS. 2006;20(14):1906–7.

    Article  PubMed  Google Scholar 

  34. Barrett JS, et al. Population pharmacokinetic meta-analysis with efavirenz. Int J Clin Pharmacol Ther. 2002;40(11):507–19.

    PubMed  CAS  Google Scholar 

  35. Landriscina M, et al. Reverse transcriptase inhibitors induce cell differentiation and enhance the immunogenic phenotype in human renal clear-cell carcinoma. Int J Cancer. 2008;122(12):2842–50.

    Article  PubMed  CAS  Google Scholar 

  36. Ellfolk M, et al. Regulation of human vitamin D(3) 25-hydroxylases in dermal fibroblasts and prostate cancer LNCaP cells. Mol Pharmacol. 2009;75(6):1392–9.

    Article  PubMed  CAS  Google Scholar 

  37. Herzmann C, Arasteh K. Efavirenz-induced osteomalacia. AIDS. 2009;23(2):274–5.

    Article  PubMed  Google Scholar 

  38. Zhou C, et al. Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest. 2006;116(6):1703–12.

    Article  PubMed  CAS  Google Scholar 

  39. Welz T, Childs K, Post FA. Do nevirapine and efavirenz affect vitamin D homeostasis similarly? AIDS. 2011;25(6):875–6.

    Article  PubMed  Google Scholar 

  40. Gafni RI, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy: impact on bone mineral density in HIV-infected children. Pediatrics. 2006;118(3):e711–8.

    Article  PubMed  Google Scholar 

  41. Kinai E, Hanabusa H. Renal tubular toxicity associated with tenofovir assessed using urine-beta 2 microglobulin, percentage of tubular reabsorption of phosphate and alkaline phosphatase levels. AIDS. 2005;19(17):2031–3.

    Article  PubMed  CAS  Google Scholar 

  42. Gallant JE, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA. 2004;292(2):191–201.

    Article  PubMed  CAS  Google Scholar 

  43. Hazra R, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy for pediatric HIV infection. Pediatrics. 2005;116(6):e846–54.

    Article  PubMed  Google Scholar 

  44. Jones S, et al. Risk factors for decreased bone density and effects of HIV on bone in the elderly. Osteoporos Int. 2008;19(7):913–8.

    Article  PubMed  CAS  Google Scholar 

  45. McComsey GA, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224 s, a substudy of ACTG A5202. J Infect Dis. 2011;203(12):1791–801.

    Article  PubMed  CAS  Google Scholar 

  46. Calmy A, et al. Low bone mineral density, renal dysfunction, and fracture risk in HIV infection: a cross-sectional study. J Infect Dis. 2009;200(11):1746–54.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenvinge MM, et al. Tenofovir-linked hyperparathyroidism is independently associated with the presence of vitamin D deficiency. J Acquir Immune Defic Syndr. 2010;54(5):496–9.

    Article  PubMed  CAS  Google Scholar 

  48. Havens P, et al. Vitamin D3 supplementation decreases PTH in HIV-infected youth being treated with TDF-containing combination ART: a randomized, double-blind, placebo-controlled multicenter trial: adolescent trials network study 063 (abstract 80). In 18th Conference on Retroviruses and Opportunistic Infections 2011. Boston, MA.

  49. Childs KE, et al. Short communication: inadequate vitamin D exacerbates parathyroid hormone elevations in tenofovir users. AIDS Res Hum Retroviruses. 2010;26(8):855–9.

    Article  PubMed  CAS  Google Scholar 

  50. Bongiovanni M, et al. Osteoporosis in HIV-infected subjects: a combined effect of highly active antiretroviral therapy and HIV itself? J Acquir Immune Defic Syndr. 2005;40(4):503–4.

    Article  PubMed  Google Scholar 

  51. Fausto A, et al. Potential predictive factors of osteoporosis in HIV-positive subjects. Bone. 2006;38(6):893–7.

    Article  PubMed  Google Scholar 

  52. Mondy K, et al. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals. Clin Infect Dis. 2003;36(4):482–90.

    Article  PubMed  Google Scholar 

  53. Bischoff-Ferrari HA, et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 2005;293(18):2257–64.

    Article  PubMed  CAS  Google Scholar 

  54. Dawson-Hughes B, et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337(10):670–6.

    Article  PubMed  CAS  Google Scholar 

  55. Jackson RD, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83.

    Article  PubMed  CAS  Google Scholar 

  56. El-Hajj Fuleihan G, et al. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006;91(2):405–12.

    Article  PubMed  Google Scholar 

  57. Winzenberg TM, et al. Vitamin D supplementation for improving bone mineral density in children. Cochrane Database Syst Rev; 2010(10), p. CD006944.

  58. Tebas P, et al. Initiation of ART is associated with bone loss independent of the specific ART regimen: results of ACTG A5005 s (abstract 837). In 14th Conference on Retroviruses and Opportunistic Infections 2007. Los Angeles, CA.

  59. Grund B, et al. Continuous antiretroviral therapy decreases bone mineral density. AIDS. 2009;23(12):1519–29.

    Article  PubMed  CAS  Google Scholar 

  60. Brown TT, et al. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51(5):554–61.

    Article  PubMed  CAS  Google Scholar 

  61. Tebas P, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS. 2000;14(4):F63–7.

    Article  PubMed  CAS  Google Scholar 

  62. Bruera D, et al. Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS. 2003;17(13):1917–23.

    Article  PubMed  Google Scholar 

  63. Dolan SE, Kanter JR, Grinspoon S. Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2006;91(8):2938–45.

    Article  PubMed  CAS  Google Scholar 

  64. Guillemi S, et al. Prevalence of bone mineral density abnormalities and related risk factors in an ambulatory HIV clinic population. J Clin Densitom. 2010;13(4):456–61.

    Article  PubMed  Google Scholar 

  65. Paul TV, et al. Hypovitaminosis D and bone mineral density in human immunodeficiency virus-infected men from India, with or without antiretroviral therapy. Endocr Pract. 2010;16(4):547–53.

    Article  PubMed  Google Scholar 

  66. Hileman C, et al. Bone mineral density (BMD), vitamin D levels and inflammation markers in antiretroviral-naïve HIV-infected and uninfected adults (abstract 880). In 19th Conference on Retroviruses and Opportunistic Infections 2012. Seattle, WA.

    Google Scholar 

  67. Ramayo E, et al. Relationship between osteopenia, free testosterone, and vitamin D metabolite levels in HIV-infected patients with and without highly active antiretroviral therapy. AIDS Res Hum Retroviruses. 2005;21(11):915–21.

    Article  PubMed  CAS  Google Scholar 

  68. McComsey GA, et al. Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS. 2007;21(18):2473–82.

    Article  PubMed  CAS  Google Scholar 

  69. Mondy K, et al. Alendronate, vitamin D, and calcium for the treatment of osteopenia/osteoporosis associated with HIV infection. J Acquir Immune Defic Syndr. 2005;38(4):426–31.

    Article  PubMed  CAS  Google Scholar 

  70. Arpadi S, et al. 2-year bone mass accrual in HIV+ children and adolescents after bi-monthly supplementation with oral cholecalciferol and calcium (abstract 707). In: 18th Conference on Retroviruses and Opportunistic Infections 2011. Boston, MA.

  71. Wang TT, et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005;19(11):2685–95.

    Article  PubMed  CAS  Google Scholar 

  72. Wilkinson RJ, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet. 2000;355(9204):618–21.

    Article  PubMed  CAS  Google Scholar 

  73. Davies PD, Brown RC, Woodhead JS. Serum concentrations of vitamin D metabolites in untreated tuberculosis. Thorax. 1985;40(3):187–90.

    Article  PubMed  CAS  Google Scholar 

  74. Cannell JJ, et al. Diagnosis and treatment of vitamin D deficiency. Exp Opin Pharmacother. 2008;9(1):107–18.

    Article  CAS  Google Scholar 

  75. Rehman PK. Sub-clinical rickets and recurrent infection. J Trop Pediatr. 1994;40(1):58.

    Article  PubMed  CAS  Google Scholar 

  76. Williams B, Williams AJ, Anderson ST. Vitamin D deficiency and insufficiency in children with tuberculosis. Pediatr Infect Dis J. 2008;27(10):941–2.

    Article  PubMed  Google Scholar 

  77. Muhe L, et al. Case-control study of the role of nutritional rickets in the risk of developing pneumonia in Ethiopian children. Lancet. 1997;349(9068):1801–4.

    Article  PubMed  CAS  Google Scholar 

  78. Khazai N, Judd SE, Tangpricha V. Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep. 2008;10(2):110–7.

    Article  PubMed  CAS  Google Scholar 

  79. van Etten E, et al. Regulation of vitamin D homeostasis: implications for the immune system. Nutr Rev. 2008;66(10 Suppl 2):S125–34.

    Article  PubMed  Google Scholar 

  80. Kamen DL, Tangpricha V. Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J Mol Med (Berl). 2010;88(5):441–50.

    Article  CAS  Google Scholar 

  81. Liu PT, Krutzik SR, Modlin RL. Therapeutic implications of the TLR and VDR partnership. Trends Mol Med. 2007;13(3):117–24.

    Article  PubMed  Google Scholar 

  82. Yuk JM, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6(3):231–43.

    Article  PubMed  CAS  Google Scholar 

  83. Bergman P, et al. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res. 2007;5(4):410–5.

    Article  PubMed  CAS  Google Scholar 

  84. Frohm Nilsson M, et al. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun. 1999;67(5):2561–6.

    PubMed  CAS  Google Scholar 

  85. Levinson P, et al. Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition. AIDS. 2009;23(3):309–17.

    Article  PubMed  CAS  Google Scholar 

  86. Mahon BD, et al. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J Cell Biochem. 2003;89(5):922–32.

    Article  PubMed  CAS  Google Scholar 

  87. Bhalla AK, et al. 1,25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation. J Immunol. 1984;133(4):1748–54.

    PubMed  CAS  Google Scholar 

  88. Lemire JM, et al. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125(6 Suppl):1704S–8S.

    PubMed  CAS  Google Scholar 

  89. Mattner F, et al. Inhibition of Th1 development and treatment of chronic-relapsing experimental allergic encephalomyelitis by a non-hypercalcemic analogue of 1,25-dihydroxyvitamin D(3). Eur J Immunol. 2000;30(2):498–508.

    Article  PubMed  CAS  Google Scholar 

  90. Schleithoff SS, et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial.[see comment]. Am J Clin Nutr. 2006;83(4):754–9.

    PubMed  CAS  Google Scholar 

  91. van Etten E, et al. The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. Eur J Immunol. 2007;37(2):395–405.

    Article  PubMed  Google Scholar 

  92. Mehta S, et al. Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. PLoS One. 5(1): p. e8770.

  93. Viard J, et al. Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. AIDS. 2011;25(10):1305-15.

    Google Scholar 

  94. de Luis DA, et al. Relation among micronutrient intakes with CD4 count in HIV infected patients. Nutr Hosp. 2002;17(6):285–9.

    PubMed  Google Scholar 

  95. Teichmann J, et al. Changes in calciotropic hormones and biochemical markers of bone metabolism in patients with human immunodeficiency virus infection. Metabolism. 2000;49(9):1134–9.

    Article  PubMed  CAS  Google Scholar 

  96. Arpadi SM, et al. Effect of bimonthly supplementation with oral cholecalciferol on serum 25-hydroxyvitamin D concentrations in HIV-infected children and adolescents. Pediatrics. 2009;123(1):e121–6.

    Article  PubMed  Google Scholar 

  97. Kakalia S, et al. Vitamin D Supplementation and CD4 Count in Children Infected with Human Immunodeficiency Virus. L Pediatr. 2011;159(6):951–7.

    Google Scholar 

  98. Haug CJ, et al. Severe deficiency of 1,25-dihydroxyvitamin D3 in human immunodeficiency virus infection: association with immunological hyperactivity and only minor changes in calcium homeostasis. J Clin Endocrinol Metab. 1998;83(11):3832–8.

    Article  PubMed  CAS  Google Scholar 

  99. Madeddu G, et al. Bone mass loss and vitamin D metabolism impairment in HIV patients receiving highly active antiretroviral therapy. Q J Nucl Med Mol Imaging. 2004;48(1):39–48.

    PubMed  Google Scholar 

  100. Haug CJ, et al. Disseminated Mycobacterium avium complex infection in AIDS: immunopathogenic significance of an activated tumor necrosis factor system and depressed serum levels of 1,25 dihydroxyvitamin D. J Infect Dis. 1996;173(1):259–62.

    Article  PubMed  CAS  Google Scholar 

  101. Kuehn EW, et al. Hypocalcaemia in HIV infection and AIDS. J Intern Med. 1999;245(1):69–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ACR has received research funding from Bristol-Myers Squibb, Cubist Pharmaceuticals, and GlaxoSmithKline. GAM has served as a consultant, speaker and has received research funding from Bristol-Myers Squibb, GlaxoSmithKline, Gilead, and Tibotec. GAM currently chairs a DSMB for a Pfizer-funded study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison C. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, A.C., McComsey, G.A. The Role of Vitamin D Deficiency in the Pathogenesis of Osteoporosis and in the Modulation of the Immune System in HIV-Infected Patients. Clinic Rev Bone Miner Metab 10, 277–287 (2012). https://doi.org/10.1007/s12018-012-9131-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-012-9131-0

Keywords

Navigation