Skip to main content

Advertisement

Log in

Rett Syndrome and MeCP2

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5hmC:

5-Hydroxymethylcytosine

5mC:

5-Methylcytosine

ALC:

Acetyl-l-carnitine

ASD:

Autism spectrum disorders

BDNF:

Brain-derived neurotrophic factor

CREB:

cAMP response element-binding protein

CTD:

C-terminal domain

DNMT:

DNA methyltransferases

E:

Enhancer

EE:

Environmental enrichment

ENCODE:

Encyclopaedia of DNA elements

FASD:

Fetal alcohol spectrum disorders

GA:

Glatiramer acetate

HDAC:

Histone deacetylases

HMGN1:

High mobility group N1 protein

HP1:

Heterochromatin binding protein 1

ID:

Inter-domain

IGF1:

Insulin-like growth factor 1

iPSC:

Induced pluripotent stem cells

IRAK1:

Interleukin-1 receptor associated kinase gene

lncRNA:

Long noncoding RNAs

MBD:

Methyl binding domain

MeCP2:

Methyl CpG binding protein 2

MeP:

Mecp2 promoter

miRNAs:

MicroRNAs

mnt:

Months

MRE:

miRNA response elements

NG:

Nodose cranial sensory ganglial cells

NSCs:

Neural stem cells

NTD:

N-terminal domain

PTMs:

Posttranslational modifications

RCP:

Red opsin gene

RTT:

Rett syndrome

S:

Silencer

TM:

Tamoxifen

TRD:

Transcription repression domain

TSA:

Trichostatin A

wks:

Weeks

yr:

Years

ω-3 PUFAs:

ω-3 polyunsaturated fatty acids

References

  • Abuhatzira, L., Makedonski, K., Kaufman, Y., Razin, A., & Shemer, R. (2007). MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics, 2(4), 214–222.

    PubMed  Google Scholar 

  • Abuhatzira, L., Shamir, A., Schones, D. E., Schaffer, A. A., & Bustin, M. (2011). The chromatin-binding protein HMGN1 regulates the expression of methyl CpG-binding protein 2 (MECP2) and affects the behavior of mice. Journal of Biological Chemistry, 286(49), 42051–42062. doi:10.1074/jbc.M111.300541.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Acampa, M., & Guideri, F. (2006). Cardiac disease and Rett syndrome. Archives of Disease in Childhood, 91(5), 440–443. doi:10.1136/adc.2005.090290.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adachi, M., Autry, A. E., Covington, H. E, 3rd, & Monteggia, L. M. (2009). MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. Journal of Neuroscience, 29(13), 4218–4227. doi:10.1523/JNEUROSCI.4225-08.2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adachi, M., Keefer, E. W., & Jones, F. S. (2005). A segment of the Mecp2 promoter is sufficient to drive expression in neurons. Human Molecular Genetics, 14(23), 3709–3722. doi:10.1093/hmg/ddi402.

    CAS  PubMed  Google Scholar 

  • Adams, V. H., McBryant, S. J., Wade, P. A., Woodcock, C. L., & Hansen, J. C. (2007). Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. Journal of Biological Chemistry, 282(20), 15057–15064. doi:10.1074/jbc.M700855200.

    CAS  PubMed  Google Scholar 

  • Agarwal, N., Becker, A., Jost, K. L., Haase, S., Thakur, B. K., Brero, A., et al. (2011). MeCP2 Rett mutations affect large scale chromatin organization. Human Molecular Genetics, 20(21), 4187–4195. doi:10.1093/hmg/ddr346.

    CAS  PubMed  Google Scholar 

  • Akhtar, M. W., Raingo, J., Nelson, E. D., Montgomery, R. L., Olson, E. N., Kavalali, E. T., et al. (2009). Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. Journal of Neuroscience, 29(25), 8288–8297. doi:10.1523/JNEUROSCI.0097-09.2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amir, R. E., Fang, P., Yu, Z., Glaze, D. G., Percy, A. K., Zoghbi, H. Y., et al. (2005). Mutations in exon 1 of MECP2 are a rare cause of Rett syndrome. Journal of Medical Genetics, 42(2), e15. doi:10.1136/jmg.2004.026161.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23(2), 185–188. doi:10.1038/13810.

    CAS  PubMed  Google Scholar 

  • Amir, R. E., & Zoghbi, H. Y. (2000). Rett syndrome: Methyl-CpG-binding protein 2 mutations and phenotype–genotype correlations. American Journal of Medical Genetics, 97(2), 147–152.

    CAS  PubMed  Google Scholar 

  • Asaka, Y., Jugloff, D. G., Zhang, L., Eubanks, J. H., & Fitzsimonds, R. M. (2006). Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiology of Diseases, 21(1), 217–227. doi:10.1016/j.nbd.2005.07.005.

    CAS  Google Scholar 

  • Bagga, J. S., & D’Antonio, L. A. (2013). Role of conserved cis-regulatory elements in the post-transcriptional regulation of the human MECP2 gene involved in autism. Human Genomics, 7(1), 19. doi:10.1186/1479-7364-7-19.

    PubMed Central  PubMed  Google Scholar 

  • Baker, S. A., Chen, L., Wilkins, A. D., Yu, P., Lichtarge, O., & Zoghbi, H. Y. (2013). An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell, 152(5), 984–996. doi:10.1016/j.cell.2013.01.038.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballas, N., Lioy, D. T., Grunseich, C., & Mandel, G. (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nature Neuroscience, 12(3), 311–317. doi:10.1038/nn.2275.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barber, B. A., Liyanage, V. R., Zachariah, R. M., Olson, C. O., Bailey, M. A., & Rastegar, M. (2013). Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Annals of Anatomy, 195(5), 431–440. doi:10.1016/j.aanat.2013.04.005.

    PubMed  Google Scholar 

  • Barber, B. A., & Rastegar, M. (2010). Epigenetic control of Hox genes during neurogenesis, development, and disease. Annals of Anatomy, 192(5), 261–274. doi:10.1016/j.aanat.2010.07.009.

    CAS  PubMed  Google Scholar 

  • Bartholdi, D., Klein, A., Weissert, M., Koenig, N., Baumer, A., Boltshauser, E., et al. (2006). Clinical profiles of four patients with Rett syndrome carrying a novel exon 1 mutation or genomic rearrangement in the MECP2 gene. Clinical Genetics, 69(4), 319–326. doi:10.1111/j.1399-0004.2006.00604.x.

    CAS  PubMed  Google Scholar 

  • Baubec, T., Ivanek, R., Lienert, F., & Schubeler, D. (2013). Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell, 153(2), 480–492. doi:10.1016/j.cell.2013.03.011.

    CAS  PubMed  Google Scholar 

  • Belichenko, N. P., Belichenko, P. V., & Mobley, W. C. (2009a). Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation. Neurobiology of Diseases, 34(1), 71–77. doi:10.1016/j.nbd.2008.12.016.

    CAS  Google Scholar 

  • Belichenko, P. V., Wright, E. E., Belichenko, N. P., Masliah, E., Li, H. H., Mobley, W. C., et al. (2009b). Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: Evidence for disruption of neuronal networks. Journal of Comparative Neurology, 514(3), 240–258. doi:10.1002/cne.22009.

    CAS  PubMed  Google Scholar 

  • Ben-Zeev, B., Aharoni, R., Nissenkorn, A., & Arnon, R. (2011). Glatiramer acetate (GA, Copolymer-1) an hypothetical treatment option for Rett syndrome. Medical Hypotheses, 76(2), 190–193. doi:10.1016/j.mehy.2010.09.015.

    CAS  PubMed  Google Scholar 

  • Bernard, D., Gil, J., Dumont, P., Rizzo, S., Monte, D., Quatannens, B., et al. (2006). The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene, 25(9), 1358–1366. doi:10.1038/sj.onc.1209179.

    CAS  PubMed  Google Scholar 

  • Beyer, K. S., Blasi, F., Bacchelli, E., Klauck, S. M., Maestrini, E., & Poustka, A. (2002). Mutation analysis of the coding sequence of the MECP2 gene in infantile autism. Human Genetics, 111(4–5), 305–309. doi:10.1007/s00439-002-0786-3.

    CAS  PubMed  Google Scholar 

  • Bienvenu, T., Carrie, A., de Roux, N., Vinet, M. C., Jonveaux, P., Couvert, P., et al. (2000). MECP2 mutations account for most cases of typical forms of Rett syndrome. Human Molecular Genetics, 9(9), 1377–1384.

    CAS  PubMed  Google Scholar 

  • Bodda, C., Tantra, M., Mollajew, R., Arunachalam, J. P., Laccone, F. A., Can, K., et al. (2013). Mild overexpression of Mecp2 in mice causes a higher susceptibility toward seizures. American Journal of Pathology, 183(1), 195–210. doi:10.1016/j.ajpath.2013.03.019.

    CAS  PubMed  Google Scholar 

  • Brady, M. L., Diaz, M. R., Iuso, A., Everett, J. C., Valenzuela, C. F., & Caldwell, K. K. (2013). Moderate prenatal alcohol exposure reduces plasticity and alters NMDA receptor subunit composition in the dentate gyrus. Journal of Neuroscience, 33(3), 1062–1067. doi:10.1523/JNEUROSCI.1217-12.2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brendel, C., Belakhov, V., Werner, H., Wegener, E., Gartner, J., Nudelman, I., et al. (2011). Readthrough of nonsense mutations in Rett syndrome: Evaluation of novel aminoglycosides and generation of a new mouse model. Journal of Molecular Medicine (Berlin), 89(4), 389–398. doi:10.1007/s00109-010-0704-4.

    CAS  Google Scholar 

  • Brendel, C., Klahold, E., Gartner, J., & Huppke, P. (2009). Suppression of nonsense mutations in Rett syndrome by aminoglycoside antibiotics. Pediatric Research, 65(5), 520–523. doi:10.1203/PDR.0b013e31819d9ebc.

    CAS  PubMed  Google Scholar 

  • Brero, A., Easwaran, H. P., Nowak, D., Grunewald, I., Cremer, T., Leonhardt, H., et al. (2005). Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. Journal of Cell Biology, 169(5), 733–743. doi:10.1083/jcb.200502062.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchthal, B., Lau, D., Weiss, U., Weislogel, J. M., & Bading, H. (2012). Nuclear calcium signaling controls methyl-CpG-binding protein 2 (MeCP2) phosphorylation on serine 421 following synaptic activity. Journal of Biological Chemistry, 287(37), 30967–30974. doi:10.1074/jbc.M112.382507.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Budden, S. S., & Gunness, M. E. (2003). Possible mechanisms of osteopenia in Rett syndrome: Bone histomorphometric studies. Journal of Child Neurology, 18(10), 698–702.

    PubMed  Google Scholar 

  • Burmistrova, O. A., Goltsov, A. Y., Abramova, L. I., Kaleda, V. G., Orlova, V. A., & Rogaev, E. I. (2007). MicroRNA in schizophrenia: Genetic and expression analysis of miR-130b (22q11). Biochemistry (Moscow), 72(5), 578–582.

    CAS  Google Scholar 

  • Byard, R. W. (2006). Forensic issues and possible mechanisms of sudden death in Rett syndrome. Journal of Clinical Forensic Medicine, 13(2), 96–99. doi:10.1016/j.jcfm.2005.08.013.

    PubMed  Google Scholar 

  • Calfa, G., Percy, A. K., & Pozzo-Miller, L. (2011). Experimental models of Rett syndrome based on Mecp2 dysfunction. Experimental Biology and Medicine (Maywood), 236(1), 3–19. doi:10.1258/ebm.2010.010261.

    CAS  Google Scholar 

  • Carney, R. M., Wolpert, C. M., Ravan, S. A., Shahbazian, M., Ashley-Koch, A., Cuccaro, M. L., et al. (2003). Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatric Neurology, 28(3), 205–211.

    PubMed  Google Scholar 

  • Carter, P., Downs, J., Bebbington, A., Williams, S., Jacoby, P., Kaufmann, W. E., et al. (2010). Stereotypical hand movements in 144 subjects with Rett syndrome from the population-based Australian database. Movement Disorders, 25(3), 282–288. doi:10.1002/mds.22851.

    PubMed  Google Scholar 

  • Cartron, P. F., Nadaradjane, A., Lepape, F., Lalier, L., Gardie, B., & Vallette, F. M. (2013). Identification of TET1 partners that control its DNA-demethylating function. Genes Cancer, 4(5–6), 235–241. doi:10.1177/1947601913489020.

    PubMed Central  PubMed  Google Scholar 

  • Chadwick, L. H., & Wade, P. A. (2007). MeCP2 in Rett syndrome: Transcriptional repressor or chromatin architectural protein? Current Opinion in Genetics & Development, 17(2), 121–125. doi:10.1016/j.gde.2007.02.003.

    CAS  Google Scholar 

  • Chahrour, M., Jung, S. Y., Shaw, C., Zhou, X., Wong, S. T., Qin, J., et al. (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880), 1224–1229. doi:10.1126/science.1153252.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chahrour, M., & Zoghbi, H. Y. (2007). The story of Rett syndrome: From clinic to neurobiology. Neuron, 56(3), 422–437. doi:10.1016/j.neuron.2007.10.001.

    CAS  PubMed  Google Scholar 

  • Chang, Q., Khare, G., Dani, V., Nelson, S., & Jaenisch, R. (2006). The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron, 49(3), 341–348. doi:10.1016/j.neuron.2005.12.027.

    CAS  PubMed  Google Scholar 

  • Chao, H. T., Chen, H., Samaco, R. C., Xue, M., Chahrour, M., Yoo, J., et al. (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321), 263–269. doi:10.1038/nature09582.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chao, H. T., Zoghbi, H. Y., & Rosenmund, C. (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56(1), 58–65. doi:10.1016/j.neuron.2007.08.018.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapleau, C. A., Calfa, G. D., Lane, M. C., Albertson, A. J., Larimore, J. L., Kudo, S., et al. (2009). Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiology of Diseases, 35(2), 219–233. doi:10.1016/j.nbd.2009.05.001.

    CAS  Google Scholar 

  • Chen, R. Z., Akbarian, S., Tudor, M., & Jaenisch, R. (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genetics, 27(3), 327–331. doi:10.1038/85906.

    CAS  PubMed  Google Scholar 

  • Chen, W. G., Chang, Q., Lin, Y., Meissner, A., West, A. E., Griffith, E. C., et al. (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646), 885–889. doi:10.1126/science.1086446.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Ozturk, N. C., & Zhou, F. C. (2013). DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS ONE, 8(3), e60503. doi:10.1371/journal.pone.0060503.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng, J., Huang, M., Zhu, Y., Xin, Y. J., Zhao, Y. K., Huang, J., et al. (2013). SUMOylation of MeCP2 is essential for transcriptional repression and hippocampal synapse development. Journal of Neurochemistry,. doi:10.1111/jnc.12523.

    Google Scholar 

  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942), 834–840. doi:10.1126/science.1175371.

    CAS  PubMed  Google Scholar 

  • Christodoulou, J., Grimm, A., Maher, T., & Bennetts, B. (2003). RettBASE: The IRSA MECP2 variation database—A new mutation database in evolution. Human Mutation, 21(5), 466–472. doi:10.1002/humu.10194.

    CAS  PubMed  Google Scholar 

  • Chunshu, Y., Endoh, K., Soutome, M., Kawamura, R., & Kubota, T. (2006). A patient with classic Rett syndrome with a novel mutation in MECP2 exon 1. Clinical Genetics, 70(6), 530–531. doi:10.1111/j.1399-0004.2006.00712.x.

    CAS  PubMed  Google Scholar 

  • Cirignotta, F., Lugaresi, E., & Montagna, P. (1986). Breathing impairment in Rett syndrome. American Journal of Medical Genetics, Supplement 1, 167–173.

    Google Scholar 

  • Cohen, S., Gabel, H. W., Hemberg, M., Hutchinson, A. N., Sadacca, L. A., Ebert, D. H., et al. (2011). Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1), 72–85. doi:10.1016/j.neuron.2011.08.022.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen, D., Lazar, G., Couvert, P., Desportes, V., Lippe, D., Mazet, P., et al. (2002). MECP2 mutation in a boy with language disorder and schizophrenia. American Journal of Psychiatry, 159(1), 148–149.

    PubMed  Google Scholar 

  • Collins, A. L., Levenson, J. M., Vilaythong, A. P., Richman, R., Armstrong, D. L., Noebels, J. L., et al. (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Human Molecular Genetics, 13(21), 2679–2689. doi:10.1093/hmg/ddh282.

    CAS  PubMed  Google Scholar 

  • Coutinho, A. M., Oliveira, G., Katz, C., Feng, J., Yan, J., Yang, C., et al. (2007). MECP2 coding sequence and 3′UTR variation in 172 unrelated autistic patients. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B(4), 475–483. doi:10.1002/ajmg.b.30490.

    CAS  Google Scholar 

  • Coy, J. F., Sedlacek, Z., Bachner, D., Delius, H., & Poustka, A. (1999). A complex pattern of evolutionary conservation and alternative polyadenylation within the long 3″-untranslated region of the methyl-CpG-binding protein 2 gene (MeCP2) suggests a regulatory role in gene expression. Human Molecular Genetics, 8(7), 1253–1262.

    CAS  PubMed  Google Scholar 

  • Craig, J. M., Earle, E., Canham, P., Wong, L. H., Anderson, M., & Choo, K. H. (2003). Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns. Human Molecular Genetics, 12(23), 3109–3121. doi:10.1093/hmg/ddg330.

    CAS  PubMed  Google Scholar 

  • Cukier, H. N., Perez, A. M., Collins, A. L., Zhou, Z., Zoghbi, H. Y., & Botas, J. (2008). Genetic modifiers of MeCP2 function in Drosophila. PLoS Genetics, 4(9), e1000179. doi:10.1371/journal.pgen.1000179.

    PubMed Central  PubMed  Google Scholar 

  • Cusack, S. M., Rohn, T. T., Medeck, R. J., Irwin, K. M., Brown, R. J., Mercer, L. M., et al. (2004). Suppression of MeCP2β expression inhibits neurite extension in PC12 cells. Experimental Cell Research, 299(2), 442–453. doi:10.1016/j.yexcr.2004.05.035.

    CAS  PubMed  Google Scholar 

  • Dastidar, S. G., Bardai, F. H., Ma, C., Price, V., Rawat, V., Verma, P., et al. (2012). Isoform-specific toxicity of Mecp2 in postmitotic neurons: Suppression of neurotoxicity by FoxG1. Journal of Neuroscience, 32(8), 2846–2855. doi:10.1523/JNEUROSCI.5841-11.2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Felice, C., Signorini, C., Durand, T., Ciccoli, L., Leoncini, S., D’Esposito, M., et al. (2012). Partial rescue of Rett syndrome by omega-3 polyunsaturated fatty acids (PUFAs) oil. Genes & Nutrition, 7(3), 447–458. doi:10.1007/s12263-012-0285-7.

    Google Scholar 

  • Delcuve, G. P., Rastegar, M., & Davie, J. R. (2009). Epigenetic control. Journal of Cellular Physiology, 219(2), 243–250. doi:10.1002/jcp.21678.

    CAS  PubMed  Google Scholar 

  • Della Ragione, F., Filosa, S., Scalabri, F., & D’Esposito, M. (2012). MeCP2 as a genome-wide modulator: The renewal of an old story. Frontiers in Genetics, 3, 181. doi:10.3389/fgene.2012.00181.

    CAS  PubMed  Google Scholar 

  • Deogracias, R., Yazdani, M., Dekkers, M. P., Guy, J., Ionescu, M. C., Vogt, K. E., et al. (2012). Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences USA, 109(35), 14230–14235. doi:10.1073/pnas.1206093109.

    CAS  Google Scholar 

  • Dephoure, N., Zhou, C., Villen, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., et al. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences USA, 105(31), 10762–10767. doi:10.1073/pnas.0805139105.

    CAS  Google Scholar 

  • Derecki, N. C., Cronk, J. C., Lu, Z., Xu, E., Abbott, S. B., Guyenet, P. G., et al. (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392), 105–109. doi:10.1038/nature10907.

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Esposito, M., Quaderi, N. A., Ciccodicola, A., Bruni, P., Esposito, T., D’Urso, M., et al. (1996). Isolation, physical mapping, and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2. Mammalian Genome, 7(7), 533–535.

    PubMed  Google Scholar 

  • Dragich, J. M., Kim, Y. H., Arnold, A. P., & Schanen, N. C. (2007). Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. Journal of Comparative Neurology, 501(4), 526–542. doi:10.1002/cne.21264.

    PubMed  Google Scholar 

  • Ebert, D. H., Gabel, H. W., Robinson, N. D., Kastan, N. R., Hu, L. S., Cohen, S., et al. (2013). Activity-dependent phosphorylation of MECP2 threonine 308 regulates interaction with NcoR. Nature,. doi:10.1038/nature12348.

    PubMed Central  Google Scholar 

  • Evans, J. C., Archer, H. L., Colley, J. P., Ravn, K., Nielsen, J. B., Kerr, A., et al. (2005a). Early onset seizures and Rett-like features associated with mutations in CDKL5. European Journal of Human Genetics, 13(10), 1113–1120. doi:10.1038/sj.ejhg.5201451.

    CAS  PubMed  Google Scholar 

  • Evans, J. C., Archer, H. L., Whatley, S. D., Kerr, A., Clarke, A., & Butler, R. (2005b). Variation in exon 1 coding region and promoter of MECP2 in Rett syndrome and controls. European Journal of Human Genetics, 13(1), 124–126. doi:10.1038/sj.ejhg.5201270.

    CAS  PubMed  Google Scholar 

  • Ezeonwuka, C., & Rastegar, M. (2014). MeCP2-related diseases and animal models. Diseases, 2(1), 45–70.

    Google Scholar 

  • Fichou, Y., Nectoux, J., Bahi-Buisson, N., Rosas-Vargas, H., Girard, B., Chelly, J., et al. (2009). The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform. Neurogenetics, 10(2), 127–133. doi:10.1007/s10048-008-0161-1.

    CAS  PubMed  Google Scholar 

  • Franklin, T. B., Russig, H., Weiss, I. C., Graff, J., Linder, N., Michalon, A., et al. (2010). Epigenetic transmission of the impact of early stress across generations. Biological Psychiatry, 68(5), 408–415. doi:10.1016/j.biopsych.2010.05.036.

    PubMed  Google Scholar 

  • Fukuda, T., Itoh, M., Ichikawa, T., Washiyama, K., & Goto, Y. (2005). Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. Journal of Neuropathology and Experimental Neurology, 64(6), 537–544.

    CAS  PubMed  Google Scholar 

  • Fukushige, S., & Horii, A. (2013). DNA methylation in cancer: A gene silencing mechanism and the clinical potential of its biomarkers. Tohoku Journal of Experimental Medicine, 229(3), 173–185.

    CAS  PubMed  Google Scholar 

  • Fyffe, S. L., Neul, J. L., Samaco, R. C., Chao, H. T., Ben-Shachar, S., Moretti, P., et al. (2008). Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 59(6), 947–958. doi:10.1016/j.neuron.2008.07.030.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garg, S. K., Lioy, D. T., Cheval, H., McGann, J. C., Bissonnette, J. M., Murtha, M. J., et al. (2013). Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. Journal of Neuroscience, 33(34), 13612–13620. doi:10.1523/JNEUROSCI.1854-13.2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gemelli, T., Berton, O., Nelson, E. D., Perrotti, L. I., Jaenisch, R., & Monteggia, L. M. (2006). Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biological Psychiatry, 59(5), 468–476. doi:10.1016/j.biopsych.2005.07.025.

    CAS  PubMed  Google Scholar 

  • Georgel, P. T., Horowitz-Scherer, R. A., Adkins, N., Woodcock, C. L., Wade, P. A., & Hansen, J. C. (2003). Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. Journal of Biological Chemistry, 278(34), 32181–32188. doi:10.1074/jbc.M305308200.

    CAS  PubMed  Google Scholar 

  • Ghosh, R. P., Horowitz-Scherer, R. A., Nikitina, T., Shlyakhtenko, L. S., & Woodcock, C. L. (2010a). MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Molecular and Cellular Biology, 30(19), 4656–4670. doi:10.1128/MCB.00379-10.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh, R. P., Nikitina, T., Horowitz-Scherer, R. A., Gierasch, L. M., Uversky, V. N., Hite, K., et al. (2010b). Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry, 49(20), 4395–4410. doi:10.1021/bi9019753.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giacometti, E., Luikenhuis, S., Beard, C., & Jaenisch, R. (2007). Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proceedings of the National Academy of Sciences USA, 104(6), 1931–1936. doi:10.1073/pnas.0610593104.

    CAS  Google Scholar 

  • Gianakopoulos, P. J., Zhang, Y., Pencea, N., Orlic-Milacic, M., Mittal, K., Windpassinger, C., et al. (2012). Mutations in MECP2 exon 1 in classical Rett patients disrupt MECP2_e1 transcription, but not transcription of MECP2_e2. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B(2), 210–216. doi:10.1002/ajmg.b.32015.

    Google Scholar 

  • Gibson, J. H., Williamson, S. L., Arbuckle, S., & Christodoulou, J. (2005). X chromosome inactivation patterns in brain in Rett syndrome: Implications for the disease phenotype. Brain Development, 27(4), 266–270. doi:10.1016/j.braindev.2004.07.002.

    PubMed  Google Scholar 

  • Gillberg, C. (1986). Autism and Rett syndrome: Some notes on differential diagnosis. American Journal of Medical Genetics, Supplement 1, 127–131.

    Google Scholar 

  • Goffin, D., Allen, M., Zhang, L., Amorim, M., Wang, I. T .J., Reyes, A. -R. S., et al. (2011). Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nature Neuroscience, 15(2), 274–283. http://www.nature.com/neuro/journal/v15/n2/abs/nn.2997.html#supplementary-information.

    Google Scholar 

  • Gonzales, M. L., Adams, S., Dunaway, K. W., & LaSalle, J. M. (2012). Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation. Molecular and Cellular Biology, 32(14), 2894–2903. doi:10.1128/MCB.06728-11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guideri, F., & Acampa, M. (2005). Sudden death and cardiac arrhythmias in Rett syndrome. Pediatric Cardiology, 26(1), 111. doi:10.1007/s00246-004-0701-x.

    CAS  PubMed  Google Scholar 

  • Guideri, F., Acampa, M., Blardi, P., de Lalla, A., Zappella, M., & Hayek, Y. (2004). Cardiac dysautonomia and serotonin plasma levels in Rett syndrome. Neuropediatrics, 35(1), 36–38. doi:10.1055/s-2004-815789.

    CAS  PubMed  Google Scholar 

  • Guo, Y., Chen, Y., Carreon, S., & Qiang, M. (2012). Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures. Alcoholism, Clinical and Experimental Research, 36(6), 1058–1066. doi:10.1111/j.1530-0277.2011.01689.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guy, J., Cheval, H., Selfridge, J., & Bird, A. (2011). The role of MeCP2 in the brain. Annual Review of Cell and Developmental Biology, 27, 631–652. doi:10.1146/annurev-cellbio-092910-154121.

    CAS  PubMed  Google Scholar 

  • Guy, J., Gan, J., Selfridge, J., Cobb, S., & Bird, A. (2007). Reversal of neurological defects in a mouse model of Rett syndrome. Science, 315(5815), 1143–1147. doi:10.1126/science.1138389.

    CAS  PubMed  Google Scholar 

  • Guy, J., Hendrich, B., Holmes, M., Martin, J. E., & Bird, A. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genetics, 27(3), 322–326. doi:10.1038/85899.

    CAS  PubMed  Google Scholar 

  • Hagberg, B. (2002). Clinical manifestations and stages of Rett syndrome. Mental Retardation and Developmental Disabilities, 8(2), 61–65. doi:10.1002/mrdd.10020.

    Google Scholar 

  • Hagberg, B., Aicardi, J., Dias, K., & Ramos, O. (1983). A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases. Annals of Neurology, 14(4), 471–479. doi:10.1002/ana.410140412.

    CAS  PubMed  Google Scholar 

  • Hagebeuk, E. E., Koelman, J. H., Duran, M., Abeling, N. G., Vyth, A., & Poll-The, B. T. (2011). Clinical and electroencephalographic effects of folinic acid treatment in Rett syndrome patients. Journal of Child Neurology, 26(6), 718–723. doi:10.1177/0883073810390037.

    PubMed  Google Scholar 

  • Han, K., Gennarino, V. A., Lee, Y., Pang, K., Hashimoto-Torii, K., Choufani, S., et al. (2013). Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. Genes & Development, 27(5), 485–490. doi:10.1101/gad.207456.112.

    CAS  Google Scholar 

  • Hansen, J. C., Ghosh, R. P., & Woodcock, C. L. (2010). Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life, 62(10), 732–738. doi:10.1002/iub.386.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto, Y., Akiyama, Y., & Yuasa, Y. (2013). Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS ONE, 8(5), e62589. doi:10.1371/journal.pone.0062589.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heilstedt, H. A., Shahbazian, M. D., & Lee, B. (2002). Infantile hypotonia as a presentation of Rett syndrome. American Journal of Medical Genetics, 111(3), 238–242. doi:10.1002/ajmg.10633.

    PubMed  Google Scholar 

  • Hite, K. C., Kalashnikova, A. A., & Hansen, J. C. (2012). Coil-to-helix transitions in intrinsically disordered methyl CpG binding protein 2 and its isolated domains. Protein Science, 21(4), 531–538. doi:10.1002/pro.2037.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho, K. L., McNae, I. W., Schmiedeberg, L., Klose, R. J., Bird, A. P., & Walkinshaw, M. D. (2008). MeCP2 binding to DNA depends upon hydration at methyl-CpG. Molecular Cell, 29(4), 525–531. doi:10.1016/j.molcel.2007.12.028.

    CAS  PubMed  Google Scholar 

  • Hoffbuhr, K., Devaney, J. M., LaFleur, B., Sirianni, N., Scacheri, C., Giron, J., et al. (2001). MeCP2 mutations in children with and without the phenotype of Rett syndrome. Neurology, 56(11), 1486–1495.

    CAS  PubMed  Google Scholar 

  • Hoffbuhr, K. C., Moses, L. M., Jerdonek, M. A., Naidu, S., & Hoffman, E. P. (2002). Associations between MeCP2 mutations, X-chromosome inactivation, and phenotype. Mental Retardation and Developmental Disabilities Research Reviews, 8(2), 99–105. doi:10.1002/mrdd.10026.

    CAS  PubMed  Google Scholar 

  • Holm, V. A., & King, H. A. (1990). Scoliosis in the Rett syndrome. Brain Development, 12(1), 151–153.

    CAS  PubMed  Google Scholar 

  • Horike, S., Cai, S., Miyano, M., Cheng, J. F., & Kohwi-Shigematsu, T. (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nature Genetics, 37(1), 31–40. doi:10.1038/ng1491.

    CAS  PubMed  Google Scholar 

  • Hung, M. S., & Shen, C. K. (2003). Eukaryotic methyl-CpG-binding domain proteins and chromatin modification. Eukaryotic Cell, 2(5), 841–846.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huppke, P., Ohlenbusch, A., Brendel, C., Laccone, F., & Gartner, J. (2005). Mutation analysis of the HDAC 1, 2, 8 and CDKL5 genes in Rett syndrome patients without mutations in MECP2. American Journal of Medical Genetics Part A, 137(2), 136–138. doi:10.1002/ajmg.a.30764.

    PubMed  Google Scholar 

  • Hutchinson, A. N., Deng, J. V., Cohen, S., & West, A. E. (2012). Phosphorylation of MeCP2 at Ser421 contributes to chronic antidepressant action. Journal of Neuroscience, 32(41), 14355–14363. doi:10.1523/JNEUROSCI.2156-12.2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Im, H. I., Hollander, J. A., Bali, P., & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120–1127. doi:10.1038/nn.2615.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isaacs, J. S., Murdock, M., Lane, J., & Percy, A. K. (2003). Eating difficulties in girls with Rett syndrome compared with other developmental disabilities. Journal of the American Dietetic Association, 103(2), 224–230. doi:10.1053/jada.2003.50026.

    PubMed  Google Scholar 

  • Ishii, T., Makita, Y., Ogawa, A., Amamiya, S., Yamamoto, M., Miyamoto, A., et al. (2001). The role of different X-inactivation pattern on the variable clinical phenotype with Rett syndrome. Brain Development, 23(Suppl 1), S161–S164.

    PubMed  Google Scholar 

  • Itoh, M., Tahimic, C. G., Ide, S., Otsuki, A., Sasaoka, T., Noguchi, S., et al. (2012). Methyl CpG-binding protein isoform MeCP2_e2 is dispensable for Rett syndrome phenotypes but essential for embryo viability and placenta development. Journal of Biological Chemistry, 287(17), 13859–13867. doi:10.1074/jbc.M111.309864.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jan, M. M., Dooley, J. M., & Gordon, K. E. (1999). Male Rett syndrome variant: Application of diagnostic criteria. Pediatric Neurology, 20(3), 238–240.

    CAS  PubMed  Google Scholar 

  • Jedele, K. B. (2007). The overlapping spectrum of Rett and Angelman syndromes: A clinical review. Seminars in Pediatric Neurology, 14(3), 108–117. doi:10.1016/j.spen.2007.07.002.

    PubMed  Google Scholar 

  • Jentarra, G. M., Olfers, S. L., Rice, S. G., Srivastava, N., Homanics, G. E., Blue, M., et al. (2010). Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation. BMC Neuroscience, 11, 19. doi:10.1186/1471-2202-11-19.

    PubMed Central  PubMed  Google Scholar 

  • Jin, J., Bao, X., Wang, H., Pan, H., Zhang, Y., & Wu, X. (2008). RNAi-induced down-regulation of Mecp2 expression in the rat brain. International Journal of Developmental Neuroscience, 26(5), 457–465. doi:10.1016/j.ijdevneu.2008.02.009.

    CAS  PubMed  Google Scholar 

  • Jugloff, D. G., Vandamme, K., Logan, R., Visanji, N. P., Brotchie, J. M., & Eubanks, J. H. (2008). Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. Human Molecular Genetics, 17(10), 1386–1396. doi:10.1093/hmg/ddn026.

    CAS  PubMed  Google Scholar 

  • Julu, P. O., Kerr, A. M., Hansen, S., Apartopoulos, F., & Jamal, G. A. (1997). Immaturity of medullary cardiorespiratory neurones leading to inappropriate autonomic reactions as a likely cause of sudden death in Rett’s syndrome. Archives of Disease in Childhood, 77(5), 464–465.

    CAS  PubMed  Google Scholar 

  • Katz, D. M., Dutschmann, M., Ramirez, J. M., & Hilaire, G. (2009). Breathing disorders in Rett syndrome: Progressive neurochemical dysfunction in the respiratory network after birth. Respiratory Physiology & Neurobiology, 168(1–2), 101–108. doi:10.1016/j.resp.2009.04.017.

    CAS  Google Scholar 

  • Kernohan, K. D., Jiang, Y., Tremblay, D. C., Bonvissuto, A. C., Eubanks, J. H., Mann, M. R., et al. (2010). ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Developmental Cell, 18(2), 191–202. doi:10.1016/j.devcel.2009.12.017.

    CAS  PubMed  Google Scholar 

  • Kerr, B., Silva, P. A., Walz, K., & Young, J. I. (2010). Unconventional transcriptional response to environmental enrichment in a mouse model of Rett syndrome. PLoS ONE, 5(7), e11534. doi:10.1371/journal.pone.0011534.

    PubMed Central  PubMed  Google Scholar 

  • Kerr, B., Soto, C. J., Saez, M., Abrams, A., Walz, K., & Young, J. I. (2012). Transgenic complementation of MeCP2 deficiency: Phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. European Journal of Human Genetics, 20(1), 69–76. doi:10.1038/ejhg.2011.145.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, K. Y., Hysolli, E., & Park, I. H. (2011). Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proceedings of the National Academy of Sciences USA, 108(34), 14169–14174. doi:10.1073/pnas.1018979108.

    CAS  Google Scholar 

  • Kim, P., Park, J. H., Choi, C. S., Choi, I., Joo, S. H., Kim, M. K., et al. (2013). Effects of ethanol exposure during early pregnancy in hyperactive, inattentive and impulsive behaviors and MeCP2 expression in rodent offspring. Neurochemical Research, 38(3), 620–631. doi:10.1007/s11064-012-0960-5.

    CAS  PubMed  Google Scholar 

  • Kim, B., Rincon Castro, L. M., Jawed, S., & Niles, L. P. (2008). Clinically relevant concentrations of valproic acid modulate melatonin MT(1) receptor, HDAC and MeCP2 mRNA expression in C6 glioma cells. European Journal of Pharmacology, 589(1–3), 45–48. doi:10.1016/j.ejphar.2008.04.058.

    CAS  PubMed  Google Scholar 

  • Kishi, N., & Macklis, J. D. (2004). MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Molecular and Cellular Neuroscience, 27(3), 306–321. doi:10.1016/j.mcn.2004.07.006.

    CAS  PubMed  Google Scholar 

  • Kishi, N., & Macklis, J. D. (2010). MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Experimental Neurology, 222(1), 51–58. doi:10.1016/j.expneurol.2009.12.007.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klauck, S. M., Lindsay, S., Beyer, K. S., Splitt, M., Burn, J., & Poustka, A. (2002). A mutation hot spot for nonspecific X-linked mental retardation in the MECP2 gene causes the PPM-X syndrome. American Journal of Human Genetics, 70(4), 1034–1037. doi:10.1086/339553.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10(12), 1513–1514. doi:10.1038/nn2010.

    CAS  PubMed  Google Scholar 

  • Kline, D. D., Ogier, M., Kunze, D. L., & Katz, D. M. (2010). Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. Journal of Neuroscience, 30(15), 5303–5310. doi:10.1523/JNEUROSCI.5503-09.2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo, M., Gray, L. J., Pelka, G. J., Christodoulou, J., Tam, P. P., & Hannan, A. J. (2008). Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome–Mecp2 gene dosage effects and BDNF expression. European Journal of Neuroscience, 27(12), 3342–3350. doi:10.1111/j.1460-9568.2008.06305.x.

    PubMed  Google Scholar 

  • Kriaucionis, S., & Bird, A. (2004). The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Research, 32(5), 1818–1823. doi:10.1093/nar/gkh349.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kudo, S., Nomura, Y., Segawa, M., Fujita, N., Nakao, M., Hammer, S., et al. (2002). Functional characterisation of MeCP2 mutations found in male patients with X linked mental retardation. Journal of Medical Genetics, 39(2), 132–136.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kudo, S., Nomura, Y., Segawa, M., Fujita, N., Nakao, M., Schanen, C., et al. (2003). Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain. Journal of Medical Genetics, 40(7), 487–493.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhn, D. E., Nuovo, G. J., Terry, A. V, Jr, Martin, M. M., Malana, G. E., Sansom, S. E., et al. (2010). Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains. Journal of Biological Chemistry, 285(2), 1529–1543. doi:10.1074/jbc.M109.033407.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar, A., Kamboj, S., Malone, B. M., Kudo, S., Twiss, J. L., Czymmek, K. J., et al. (2008). Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. Journal of Cell Science, 121(Pt 7), 1128–1137. doi:10.1242/jcs.016865.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwano, Y., Kamio, Y., Kawai, T., Katsuura, S., Inada, N., Takaki, A., et al. (2011). Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children. PLoS ONE, 6(9), e24723. doi:10.1371/journal.pone.0024723.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lam, C. W., Yeung, W. L., Ko, C. H., Poon, P. M., Tong, S. F., Chan, K. Y., et al. (2000). Spectrum of mutations in the MECP2 gene in patients with infantile autism and Rett syndrome. Journal of Medical Genetics, 37(12), E41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larimore, J. L., Chapleau, C. A., Kudo, S., Theibert, A., Percy, A. K., & Pozzo-Miller, L. (2009). Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiology of Diseases, 34(2), 199–211. doi:10.1016/j.nbd.2008.12.011.

    CAS  Google Scholar 

  • Lawson-Yuen, A., Liu, D., Han, L., Jiang, Z. I., Tsai, G. E., Basu, A. C., et al. (2007). Ube3a mRNA and protein expression are not decreased in Mecp2R168X mutant mice. Brain Research, 1180, 1–6. doi:10.1016/j.brainres.2007.08.039.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, J., Leonard, H., Piek, J., & Downs, J. (2013). Early development and regression in Rett syndrome. Clinical Genetics,. doi:10.1111/cge.12110.

    Google Scholar 

  • Lewis, C. R., Staudinger, K., Scheck, L., & Olive, M. F. (2013). The effects of maternal separation on adult methamphetamine self-administration, extinction, reinstatement, and MeCP2 immunoreactivity in the nucleus accumbens. Frontiers in Psychiatry, 4, 55. doi:10.3389/fpsyt.2013.00055.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li, Y., Wang, H., Muffat, J., Cheng, A. W., Orlando, D. A., Loven, J., et al. (2013). Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell, 13(4), 446–458. doi:10.1016/j.stem.2013.09.001.

    PubMed  Google Scholar 

  • Li, H., Zhong, X., Chau, K. F., Williams, E. C., & Chang, Q. (2011). Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nature Neuroscience, 14(8), 1001–1008. doi:10.1038/nn.2866.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lioy, D. T., Garg, S. K., Monaghan, C. E., Raber, J., Foust, K. D., Kaspar, B. K., et al. (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357), 497–500. doi:10.1038/nature10214.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, J., & Francke, U. (2006). Identification of cis-regulatory elements for MECP2 expression. Human Molecular Genetics, 15(11), 1769–1782. doi:10.1093/hmg/ddl099.

    CAS  PubMed  Google Scholar 

  • Liyanage, V. R. B., Zachariah, R. M., Delcuve, G. P., Davie, J. R., & Rastegar, M. (2012). New developments in chromatin research: An epigenetic perspective. In N. M. Simpson & V. J. Stewart (Eds.), New developments in chromatin research (pp. 29–58). New York: Nova Science.

  • Liyanage, V., Zachariah, R., & Rastegar, M. (2013). Decitabine alters the expression of Mecp2 isoforms via dynamic DNA methylation at the Mecp2 regulatory elements in neural stem cells. Molecular Autism, 4(1), 46. doi:10.1186/2040-2392-4-46.

    PubMed Central  PubMed  Google Scholar 

  • Loat, C. S., Curran, S., Lewis, C. M., Duvall, J., Geschwind, D., Bolton, P., et al. (2008). Methyl-CpG-binding protein 2 polymorphisms and vulnerability to autism. Genes, Brain and Behavior, 7(7), 754–760. doi:10.1111/j.1601-183X.2008.00414.x.

    CAS  Google Scholar 

  • Lonetti, G., Angelucci, A., Morando, L., Boggio, E. M., Giustetto, M., & Pizzorusso, T. (2010). Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biological Psychiatry, 67(7), 657–665. doi:10.1016/j.biopsych.2009.12.022.

    PubMed  Google Scholar 

  • Long, S. W., Ooi, J. Y., Yau, P. M., & Jones, P. L. (2011). A brain-derived MeCP2 complex supports a role for MeCP2 in RNA processing. Bioscience Reports, 31(5), 333–343. doi:10.1042/BSR20100124.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luikenhuis, S., Giacometti, E., Beard, C. F., & Jaenisch, R. (2004). Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proceedings of the National Academy of Sciences USA, 101(16), 6033–6038. doi:10.1073/pnas.0401626101.

    CAS  Google Scholar 

  • Lusardi, T. A., Farr, C. D., Faulkner, C. L., Pignataro, G., Yang, T., Lan, J., et al. (2010). Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. Journal of Cerebral Blood Flow and Metabolism, 30(4), 744–756. doi:10.1038/jcbfm.2009.253.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyst, M. J., Ekiert, R., Ebert, D. H., Merusi, C., Nowak, J., Selfridge, J., et al. (2013). Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nature Neuroscience, 16(7), 898–902. doi:10.1038/nn.3434.

    CAS  PubMed  Google Scholar 

  • Madan, N., Levine, M., Pourmoghadam, K., & Sokoloski, M. (2004). Severe sinus bradycardia in a patient with Rett syndrome: A new cause for a pause? Pediatric Cardiology, 25(1), 53–55. doi:10.1007/s00246-003-0341-6.

    CAS  PubMed  Google Scholar 

  • Maezawa, I., & Jin, L. W. (2010). Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. Journal of Neuroscience, 30(15), 5346–5356. doi:10.1523/JNEUROSCI.5966-09.2010.

    CAS  PubMed  Google Scholar 

  • Maezawa, I., Swanberg, S., Harvey, D., LaSalle, J. M., & Jin, L. W. (2009). Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. Journal of Neuroscience, 29(16), 5051–5061. doi:10.1523/JNEUROSCI.0324-09.2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao, L. M., Horton, E., Guo, M. L., Xue, B., Jin, D. Z., Fibuch, E. E., et al. (2011). Cocaine increases phosphorylation of MeCP2 in the rat striatum in vivo: A differential role of NMDA receptors. Neurochemistry International, 59(5), 610–617. doi:10.1016/j.neuint.2011.04.013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4), 527–539. doi:10.1016/j.cell.2010.10.016.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., et al. (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 302(5646), 890–893. doi:10.1126/science.1090842.

    CAS  PubMed  Google Scholar 

  • Matarazzo, V., Cohen, D., Palmer, A. M., Simpson, P. J., Khokhar, B., Pan, S. J., et al. (2004). The transcriptional repressor Mecp2 regulates terminal neuronal differentiation. Molecular and Cellular Neuroscience, 27(1), 44–58. doi:10.1016/j.mcn.2004.05.005.

    CAS  PubMed  Google Scholar 

  • Maunakea, A. K., Chepelev, I., Cui, K., & Zhao, K. (2013). Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Research,. doi:10.1038/cr.2013.110.

    PubMed Central  PubMed  Google Scholar 

  • McCauley, M. D., Wang, T., Mike, E., Herrera, J., Beavers, D. L., Huang, T. W., et al. (2011). Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: Implication for therapy in Rett syndrome. Science Translational Medicine, 3(113), 113ra125. doi:10.1126/scitranslmed.3002982.

    PubMed Central  PubMed  Google Scholar 

  • McGraw, C. M., Samaco, R. C., & Zoghbi, H. Y. (2011). Adult neural function requires MeCP2. Science, 333(6039), 186. doi:10.1126/science.1206593.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S., & Heintz, N. (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151(7), 1417–1430. doi:10.1016/j.cell.2012.11.022.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirza, S., Sharma, G., Parshad, R., Gupta, S. D., Pandya, P., & Ralhan, R. (2013). Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. Journal of Breast Cancer, 16(1), 23–31. doi:10.4048/jbc.2013.16.1.23.

    PubMed Central  PubMed  Google Scholar 

  • Miyake, K., & Nagai, K. (2007). Phosphorylation of methyl-CpG binding protein 2 (MeCP2) regulates the intracellular localization during neuronal cell differentiation. Neurochemistry International, 50(1), 264–270. doi:10.1016/j.neuint.2006.08.018.

    CAS  PubMed  Google Scholar 

  • Miyake, K., Yang, C., Minakuchi, Y., Ohori, K., Soutome, M., Hirasawa, T., et al. (2013). Comparison of genomic and epigenomic expression in monozygotic twins discordant for Rett syndrome. PLoS ONE, 8(6), e66729. doi:10.1371/journal.pone.0066729.

    CAS  PubMed  Google Scholar 

  • Mnatzakanian, G. N., Lohi, H., Munteanu, I., Alfred, S. E., Yamada, T., MacLeod, P. J., et al. (2004). A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nature Genetics, 36(4), 339–341. doi:10.1038/ng1327.

    CAS  PubMed  Google Scholar 

  • Moog, U., Smeets, E. E., van Roozendaal, K. E., Schoenmakers, S., Herbergs, J., Schoonbrood-Lenssen, A. M., et al. (2003). Neurodevelopmental disorders in males related to the gene causing Rett syndrome in females (MECP2). European Journal of Paediatric Neurology, 7(1), 5–12.

    PubMed  Google Scholar 

  • Morton, R. E., Bonas, R., Minford, J., Kerr, A., & Ellis, R. E. (1997). Feeding ability in Rett syndrome. Developmental Medicine and Child Neurology, 39(5), 331–335.

    CAS  PubMed  Google Scholar 

  • Motil, K. J., Caeg, E., Barrish, J. O., Geerts, S., Lane, J. B., Percy, A. K., et al. (2012). Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. Journal of Pediatric Gastroenterology and Nutrition, 55(3), 292–298. doi:10.1097/MPG.0b013e31824b6159.

    PubMed Central  PubMed  Google Scholar 

  • Muller, H. M., Fiegl, H., Goebel, G., Hubalek, M. M., Widschwendter, A., Muller-Holzner, E., et al. (2003). MeCP2 and MBD2 expression in human neoplastic and non-neoplastic breast tissue and its association with oestrogen receptor status. British Journal of Cancer, 89(10), 1934–1939. doi:10.1038/sj.bjc.6601392.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami, J. W., Courchesne, E., Haas, R. H., Press, G. A., & Yeung-Courchesne, R. (1992). Cerebellar and cerebral abnormalities in Rett syndrome: A quantitative MR analysis. AJR. American Journal of Roentgenology, 159(1), 177–183. doi:10.2214/ajr.159.1.1609693.

    CAS  PubMed  Google Scholar 

  • Na, E. S., Nelson, E. D., Adachi, M., Autry, A. E., Mahgoub, M. A., Kavalali, E. T., et al. (2012). A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. Journal of Neuroscience, 32(9), 3109–3117. doi:10.1523/JNEUROSCI.6000-11.2012.

    CAS  PubMed  Google Scholar 

  • Na, E. S., Nelson, E. D., Kavalali, E. T., & Monteggia, L. M. (2013). The impact of MeCP2 loss- or gain-of-function on synaptic plasticity. Neuropsychopharmacology, 38(1), 212–219. doi:10.1038/npp.2012.116.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nag, N., Mellott, T. J., & Berger-Sweeney, J. E. (2008). Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Research, 1237, 101–109. doi:10.1016/j.brainres.2008.08.042.

    CAS  PubMed  Google Scholar 

  • Nagarajan, R. P., Hogart, A. R., Gwye, Y., Martin, M. R., & LaSalle, J. M. (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics, 1(4), e1–e11.

    PubMed Central  PubMed  Google Scholar 

  • Nagarajan, R. P., Patzel, K. A., Martin, M., Yasui, D. H., Swanberg, S. E., Hertz-Picciotto, I., et al. (2008). MECP2 promoter methylation and X chromosome inactivation in autism. Autism Research, 1(3), 169–178. doi:10.1002/aur.24.

    PubMed Central  PubMed  Google Scholar 

  • Nan, X., Hou, J., Maclean, A., Nasir, J., Lafuente, M. J., Shu, X., et al. (2007). Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proceedings of the National Academy of Sciences USA, 104(8), 2709–2714. doi:10.1073/pnas.0608056104.

    CAS  Google Scholar 

  • Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683), 386–389. doi:10.1038/30764.

    CAS  PubMed  Google Scholar 

  • Neul, J. L., & Zoghbi, H. Y. (2004). Rett syndrome: A prototypical neurodevelopmental disorder. Neuroscientist, 10(2), 118–128. doi:10.1177/1073858403260995.

    CAS  PubMed  Google Scholar 

  • Newnham, C. M., Hall-Pogar, T., Liang, S., Wu, J., Tian, B., Hu, J., et al. (2010). Alternative polyadenylation of MeCP2: Influence of cis-acting elements and trans-acting factors. RNA Biology, 7(3), 361–372.

    CAS  PubMed  Google Scholar 

  • Nguyen, M. V., Du, F., Felice, C. A., Shan, X., Nigam, A., Mandel, G., et al. (2012). MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. Journal of Neuroscience, 32(29), 10021–10034. doi:10.1523/JNEUROSCI.1316-12.2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen, M. V., Felice, C. A., Du, F., Covey, M. V., Robinson, J. K., Mandel, G., et al. (2013). Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. Journal of Neuroscience, 33(48), 18764–18774. doi:10.1523/JNEUROSCI.2657-13.2013.

    CAS  PubMed  Google Scholar 

  • Nikitina, T., Ghosh, R. P., Horowitz-Scherer, R. A., Hansen, J. C., Grigoryev, S. A., & Woodcock, C. L. (2007a). MeCP2-chromatin interactions include the formation of chromatosome-like structures and are altered in mutations causing Rett syndrome. Journal of Biological Chemistry, 282(38), 28237–28245. doi:10.1074/jbc.M704304200.

    CAS  PubMed  Google Scholar 

  • Nikitina, T., Shi, X., Ghosh, R. P., Horowitz-Scherer, R. A., Hansen, J. C., & Woodcock, C. L. (2007b). Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Molecular and Cellular Biology, 27(3), 864–877. doi:10.1128/MCB.01593-06.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura, T., Kimura, M., Horii, T., Morita, S., Soejima, H., Kudo, S., et al. (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Human Molecular Genetics, 17(8), 1192–1199. doi:10.1093/hmg/ddn011.

    CAS  PubMed  Google Scholar 

  • Nomura, Y., & Segawa, M. (1992). Motor symptoms of the Rett syndrome: Abnormal muscle tone, posture, locomotion and stereotyped movement. Brain & Development, 14(Suppl), S21–S28.

    Google Scholar 

  • Ogier, M., & Katz, D. M. (2008). Breathing dysfunction in Rett syndrome: Understanding epigenetic regulation of the respiratory network. Respiratory Physiology & Neurobiology, 164(1–2), 55–63. doi:10.1016/j.resp.2008.04.005.

    CAS  Google Scholar 

  • Ogier, M., Wang, H., Hong, E., Wang, Q., Greenberg, M. E., & Katz, D. M. (2007). Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome. Journal of Neuroscience, 27(40), 10912–10917. doi:10.1523/JNEUROSCI.1869-07.2007.

    CAS  PubMed  Google Scholar 

  • Okabe, Y., Takahashi, T., Mitsumasu, C., Kosai, K., Tanaka, E., & Matsuishi, T. (2012). Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome. PLoS ONE, 7(4), e35354. doi:10.1371/journal.pone.0035354.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olson, C. O., Zachariah, R. M., Ezeonwuka, C. D., Liyanage, V. R. B., & Rastegar, M. (2014). Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS ONE, 9(3), e90645. doi:10.1371/journal.pone.0090645.

  • Olsson, B., & Rett, A. (1987). Autism and Rett syndrome: Behavioural investigations and differential diagnosis. Developmental Medicine and Child Neurology, 29(4), 429–441.

    CAS  PubMed  Google Scholar 

  • Olynik, B. M., & Rastegar, M. (2012). The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Frontiers in Genetics, 3, 81. doi:10.3389/fgene.2012.00081.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panighini, A., Duranti, E., Santini, F., Maffei, M., Pizzorusso, T., Funel, N., et al. (2013). Vascular dysfunction in a mouse model of rett syndrome and effects of curcumin treatment. PLoS ONE, 8(5), e64863. doi:10.1371/journal.pone.0064863.

    PubMed Central  PubMed  Google Scholar 

  • Parry, L., & Clarke, A. R. (2011). The roles of the Methyl-CpG binding proteins in cancer. Genes & Cancer, 2(6), 618–630. doi:10.1177/1947601911418499.

    CAS  Google Scholar 

  • Pelka, G. J., Watson, C. M., Christodoulou, J., & Tam, P. P. (2005). Distinct expression profiles of Mecp2 transcripts with different lengths of 3′UTR in the brain and visceral organs during mouse development. Genomics, 85(4), 441–452. doi:10.1016/j.ygeno.2004.12.002.

    CAS  PubMed  Google Scholar 

  • Pelka, G. J., Watson, C. M., Radziewic, T., Hayward, M., Lahooti, H., Christodoulou, J., et al. (2006). Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain, 129(Pt 4), 887–898. doi:10.1093/brain/awl022.

    PubMed  Google Scholar 

  • Petazzi, P., Sandoval, J., Szczesna, K., Jorge, O. C., Roa, L., Sayols, S., et al. (2013). Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model. RNA Biology, 10(7), 1197–1203. doi:10.4161/rna.24286.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petel-Galil, Y., Benteer, B., Galil, Y. P., Zeev, B. B., Greenbaum, I., Vecsler, M., et al. (2006). Comprehensive diagnosis of Rett’s syndrome relying on genetic, epigenetic and expression evidence of deficiency of the methyl-CpG-binding protein 2 gene: Study of a cohort of Israeli patients. Journal of Medical Genetics, 43(12), e56. doi:10.1136/jmg.2006.041285.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters, S. U., Hundley, R. J., Wilson, A. K., Warren, Z., Vehorn, A., Carvalho, C. M., et al. (2013). The behavioral phenotype in MECP2 duplication syndrome: A comparison with idiopathic autism. Autism Research, 6(1), 42–50. doi:10.1002/aur.1262.

    PubMed Central  PubMed  Google Scholar 

  • Philippe, C., Amsallem, D., Francannet, C., Lambert, L., Saunier, A., Verneau, F., et al. (2010). Phenotypic variability in Rett syndrome associated with FOXG1 mutations in females. Journal of Medical Genetics, 47(1), 59–65. doi:10.1136/jmg.2009.067355.

    CAS  PubMed  Google Scholar 

  • Pietri, T., Roman, A. C., Guyon, N., Romano, S. A., Washbourne, P., Moens, C. B., et al. (2013). The first mecp2-null zebrafish model shows altered motor behaviors. Frontiers in Neural Circuits, 7, 118. doi:10.3389/fncir.2013.00118.

    PubMed Central  PubMed  Google Scholar 

  • Pini, G., Scusa, M. F., Congiu, L., Benincasa, A., Morescalchi, P., Bottiglioni, I., et al. (2012). IGF1 as a potential treatment for Rett syndrome: Safety assessment in six Rett patients. Autism Research and Treatment, 2012, 679801. doi:10.1155/2012/679801.

    PubMed Central  PubMed  Google Scholar 

  • Popescu, A. C., Sidorova, E., Zhang, G., & Eubanks, J. H. (2010). Aminoglycoside-mediated partial suppression of MECP2 nonsense mutations responsible for Rett syndrome in vitro. Journal of Neuroscience Research, 88(11), 2316–2324. doi:10.1002/jnr.22409.

    CAS  PubMed  Google Scholar 

  • Qiu, Z., Sylwestrak, E. L., Lieberman, D. N., Zhang, Y., Liu, X. Y., & Ghosh, A. (2012). The Rett syndrome protein MeCP2 regulates synaptic scaling. Journal of Neuroscience, 32(3), 989–994. doi:10.1523/JNEUROSCI.0175-11.2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quenard, A., Yilmaz, S., Fontaine, H., Bienvenu, T., Moncla, A., des Portes, V., et al. (2006). Deleterious mutations in exon 1 of MECP2 in Rett syndrome. European Journal of Medical Genetics, 49(4), 313–322. doi:10.1016/j.ejmg.2005.11.002.

    PubMed  Google Scholar 

  • Ramirez, J. M., Ward, C. S., & Neul, J. L. (2013). Breathing challenges in Rett Syndrome: Lessons learned from humans and animal models. Respiratory Physiology & Neurobiology,. doi:10.1016/j.resp.2013.06.022.

    Google Scholar 

  • Rapin, I., & Tuchman, R. F. (2008). Autism: Definition, neurobiology, screening, diagnosis. Pediatric Clinics of North America, 55(5), 1129–1146. doi:10.1016/j.pcl.2008.07.005.

    PubMed  Google Scholar 

  • Rastegar, M., Hotta, A., Pasceri, P., Makarem, M., Cheung, A. Y., Elliott, S., et al. (2009). MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PLoS ONE, 4(8), e6810. doi:10.1371/journal.pone.0006810.

    PubMed Central  PubMed  Google Scholar 

  • Ravn, K., Nielsen, J. B., & Schwartz, M. (2005). Mutations found within exon 1 of MECP2 in Danish patients with Rett syndrome. Clinical Genetics, 67(6), 532–533. doi:10.1111/j.1399-0004.2005.00444.x.

    CAS  PubMed  Google Scholar 

  • Ray, B. K., Dhar, S., Henry, C., Rich, A., & Ray, A. (2013). Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: Cross-talk between MeCP2 and NF1 transcription factor family. Cancer Research, 73(2), 736–744. doi:10.1158/0008-5472.CAN-12-2601.

    CAS  PubMed  Google Scholar 

  • Reeves, R., & Nissen, M. S. (1990). The AT-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. Journal of Biological Chemistry, 265(15), 8573–8582.

    CAS  PubMed  Google Scholar 

  • Reichwald, K., Thiesen, J., Wiehe, T., Weitzel, J., Poustka, W. A., Rosenthal, A., et al. (2000). Comparative sequence analysis of the MECP2-locus in human and mouse reveals new transcribed regions. Mammalian Genome, 11(3), 182–190.

    CAS  PubMed  Google Scholar 

  • Reiss, A. L., Faruque, F., Naidu, S., Abrams, M., Beaty, T., Bryan, R. N., et al. (1993). Neuroanatomy of Rett syndrome: A volumetric imaging study. Annals of Neurology, 34(2), 227–234. doi:10.1002/ana.410340220.

    CAS  PubMed  Google Scholar 

  • Renieri, A., Meloni, I., Longo, I., Ariani, F., Mari, F., Pescucci, C., et al. (2003). Rett syndrome: The complex nature of a monogenic disease. Journal of Molecular Medicine (Berlin), 81(6), 346–354. doi:10.1007/s00109-003-0444-9.

    Google Scholar 

  • Repunte-Canonigo, V., Chen, J., Lefebvre, C., Kawamura, T., Kreifeldt, M., Basson, O., et al. (2013). MeCP2 regulates ethanol sensitivity and intake. Addiction Biology,. doi:10.1111/adb.12047.

    PubMed  Google Scholar 

  • Rett, A. (1966). On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wiener Medizinische Wochenschrift, 116(37), 723–726.

    CAS  PubMed  Google Scholar 

  • Ricceri, L., De Filippis, B., & Laviola, G. (2008). Mouse models of Rett syndrome: From behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behavioural Pharmacology, 19(5–6), 501–517. doi:10.1097/FBP.0b013e32830c3645.

    CAS  PubMed  Google Scholar 

  • Ricceri, L., De Filippis, B., & Laviola, G. (2013). Rett syndrome treatment in mouse models: Searching for effective targets and strategies. Neuropharmacology, 68, 106–115. doi:10.1016/j.neuropharm.2012.08.010.

    CAS  PubMed  Google Scholar 

  • Ricciardi, S., Boggio, E. M., Grosso, S., Lonetti, G., Forlani, G., Stefanelli, G., et al. (2011). Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Human Molecular Genetics, 20(6), 1182–1196. doi:10.1093/hmg/ddq563.

    CAS  PubMed  Google Scholar 

  • Romano-Lopez, A., Mendez-Diaz, M., Ruiz-Contreras, A. E., Carrisoza, R., & Prospero-Garcia, O. (2012). Maternal separation and proclivity for ethanol intake: A potential role of the endocannabinoid system in rats. Neuroscience, 223, 296–304. doi:10.1016/j.neuroscience.2012.07.071.

    CAS  PubMed  Google Scholar 

  • Roux, J. C., Dura, E., Moncla, A., Mancini, J., & Villard, L. (2007). Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome. European Journal of Neuroscience, 25(7), 1915–1922. doi:10.1111/j.1460-9568.2007.05466.x.

    PubMed  Google Scholar 

  • Roze, E., Cochen, V., Sangla, S., Bienvenu, T., Roubergue, A., Leu-Semenescu, S., et al. (2007). Rett syndrome: An overlooked diagnosis in women with stereotypic hand movements, psychomotor retardation, parkinsonism, and dystonia? Movement Disorders, 22(3), 387–389. doi:10.1002/mds.21276.

    PubMed  Google Scholar 

  • Samaco, R. C., Nagarajan, R. P., Braunschweig, D., & LaSalle, J. M. (2004). Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Human Molecular Genetics, 13(6), 629–639. doi:10.1093/hmg/ddh063.

    CAS  PubMed  Google Scholar 

  • Sapkota, Y., Robson, P., Lai, R., Cass, C. E., Mackey, J. R., & Damaraju, S. (2012). A two-stage association study identifies methyl-CpG-binding domain protein 2 gene polymorphisms as candidates for breast cancer susceptibility. European Journal of Human Genetics, 20(6), 682–689. doi:10.1038/ejhg.2011.273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saunders, C. J., Minassian, B. E., Chow, E. W., Zhao, W., & Vincent, J. B. (2009). Novel exon 1 mutations in MECP2 implicate isoform MeCP2_e1 in classical Rett syndrome. American Journal of Medical Genetics: Part A, 149A(5), 1019–1023. doi:10.1002/ajmg.a.32776.

    CAS  Google Scholar 

  • Saxena, A., de Lagarde, D., Leonard, H., Williamson, S. L., Vasudevan, V., Christodoulou, J., et al. (2006). Lost in translation: Translational interference from a recurrent mutation in exon 1 of MECP2. Journal of Medical Genetics, 43(6), 470–477. doi:10.1136/jmg.2005.036244.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaevitz, L. R., Gómez, N. B., Zhen, D. P., & Berger-Sweeney, J. E. (2013). MeCP2 R168X male and female mutant mice exhibit Rett-like behavioral deficits. Genes, Brain and Behavior,. doi:10.1111/gbb.12070.

    Google Scholar 

  • Schaevitz, L. R., Nicolai, R., Lopez, C. M., D’Iddio, S., Iannoni, E., & Berger-Sweeney, J. E. (2012). Acetyl-L-carnitine improves behavior and dendritic morphology in a mouse model of Rett syndrome. PLoS ONE, 7(12), e51586. doi:10.1371/journal.pone.0051586.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shahbazian, M. D., Antalffy, B., Armstrong, D. L., & Zoghbi, H. Y. (2002a). Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Human Molecular Genetics, 11(2), 115–124.

    CAS  PubMed  Google Scholar 

  • Shahbazian, M., Young, J., Yuva-Paylor, L., Spencer, C., Antalffy, B., Noebels, J., et al. (2002b). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35(2), 243–254.

    CAS  PubMed  Google Scholar 

  • Shahbazian, M. D., & Zoghbi, H. Y. (2002). Rett syndrome and MeCP2: Linking epigenetics and neuronal function. American Journal of Human Genetics, 71(6), 1259–1272. doi:10.1086/345360.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheikh, T. I., Mittal, K., Willis, M. J., & Vincent, J. B. (2013). A synonymous change, p.Gly16Gly in MECP2 Exon 1, causes a cryptic splice event in a Rett syndrome patient. Orphanet Journal of Rare Diseases, 8, 108. doi:10.1186/1750-1172-8-108.

    PubMed Central  PubMed  Google Scholar 

  • Shibayama, A., Cook, E. H, Jr, Feng, J., Glanzmann, C., Yan, J., Craddock, N., et al. (2004). MECP2 structural and 3′-UTR variants in schizophrenia, autism and other psychiatric diseases: A possible association with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 128B(1), 50–53. doi:10.1002/ajmg.b.30016.

    Google Scholar 

  • Shu, L., Khor, T. O., Lee, J. H., Boyanapalli, S. S., Huang, Y., Wu, T. Y., et al. (2011). Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPS Journal, 13(4), 606–614. doi:10.1208/s12248-011-9300-y.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh, J., Saxena, A., Christodoulou, J., & Ravine, D. (2008). MECP2 genomic structure and function: Insights from ENCODE. Nucleic Acids Research, 36(19), 6035–6047. doi:10.1093/nar/gkn591.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singleton, M. K., Gonzales, M. L., Leung, K. N., Yasui, D. H., Schroeder, D. I., Dunaway, K., et al. (2011). MeCP2 is required for global heterochromatic and nucleolar changes during activity-dependent neuronal maturation. Neurobiology of Diseases, 43(1), 190–200. doi:10.1016/j.nbd.2011.03.011.

    CAS  Google Scholar 

  • Skene, P. J., Illingworth, R. S., Webb, S., Kerr, A. R., James, K. D., Turner, D. J., et al. (2010). Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Molecular Cell, 37(4), 457–468. doi:10.1016/j.molcel.2010.01.030.

    CAS  PubMed  Google Scholar 

  • Smith, R. M., & Sadee, W. (2011). Synaptic signaling and aberrant RNA splicing in autism spectrum disorders. Frontiers in Synaptic Neuroscience, 3, 1. doi:10.3389/fnsyn.2011.00001.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smrt, R. D., Eaves-Egenes, J., Barkho, B. Z., Santistevan, N. J., Zhao, C., Aimone, J. B., et al. (2007). Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiology of Diseases, 27(1), 77–89. doi:10.1016/j.nbd.2007.04.005.

    CAS  Google Scholar 

  • Squillaro, T., Alessio, N., Cipollaro, M., Melone, M. A., Hayek, G., Renieri, A., et al. (2012). Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence: New perspective for Rett syndrome. Molecular Biology of the Cell, 23(8), 1435–1445. doi:10.1091/mbc.E11-09-0784.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stettner, G. M., Huppke, P., Gartner, J., Richter, D. W., & Dutschmann, M. (2008). Disturbances of breathing in Rett syndrome: Results from patients and animal models. Advances in Experimental Medicine and Biology, 605, 503–507. doi:10.1007/978-0-387-73693-8_88.

    PubMed  Google Scholar 

  • Stuss, D. P., Cheema, M., Ng, M. K., de Paz, A. M., Williamson, B., Missiaen, K., et al. (2013). Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Research, 41(9), 4888–4900. doi:10.1093/nar/gkt213.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subramaniam, B., Naidu, S., & Reiss, A. L. (1997). Neuroanatomy in Rett syndrome: Cerebral cortex and posterior fossa. Neurology, 48(2), 399–407.

    CAS  PubMed  Google Scholar 

  • Suter, B., Treadwell-Deering, D., Zoghbi, H. Y., Glaze, D. G., & Neul, J. L. (2013). Brief report: MECP2 mutations in people without Rett syndrome. Journal of Autism and Developmental Disorders,. doi:10.1007/s10803-013-1902-z.

    Google Scholar 

  • Szulwach, K. E., Li, X., Smrt, R. D., Li, Y., Luo, Y., Lin, L., et al. (2010). Cross talk between microRNA and epigenetic regulation in adult neurogenesis. Journal of Cell Biology, 189(1), 127–141. doi:10.1083/jcb.200908151.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tao, J., Hu, K., Chang, Q., Wu, H., Sherman, N. E., Martinowich, K., et al. (2009). Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proceedings of the National Academy of Sciences USA, 106(12), 4882–4887. doi:10.1073/pnas.0811648106.

    CAS  Google Scholar 

  • Tejada, M. I., Penagarikano, O., Rodriguez-Revenga, L., Martinez-Bouzas, C., Garcia, B., Badenas, C., et al. (2006). Screening for MECP2 mutations in Spanish patients with an unexplained mental retardation. Clinical Genetics, 70(2), 140–144. doi:10.1111/j.1399-0004.2006.00647.x.

    PubMed  Google Scholar 

  • Temudo, T., Santos, M., Ramos, E., Dias, K., Vieira, J. P., Moreira, A., et al. (2011). Rett syndrome with and without detected MECP2 mutations: An attempt to redefine phenotypes. Brain Development, 33(1), 69–76. doi:10.1016/j.braindev.2010.01.004.

    PubMed  Google Scholar 

  • Thambirajah, A. A., Eubanks, J. H., & Ausio, J. (2009). MeCP2 post-translational regulation through PEST domains: Two novel hypotheses: potential relevance and implications for Rett syndrome. BioEssays, 31(5), 561–569. doi:10.1002/bies.200800220.

    CAS  PubMed  Google Scholar 

  • Thatcher, K. N., & LaSalle, J. M. (2006). Dynamic changes in Histone H3 lysine 9 acetylation localization patterns during neuronal maturation require MeCP2. Epigenetics, 1(1), 24–31.

    PubMed Central  PubMed  Google Scholar 

  • Tochiki, K. K., Cunningham, J., Hunt, S. P., & Geranton, S. M. (2012). The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states. Molecular Pain, 8, 14. doi:10.1186/1744-8069-8-14.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trinidad, J. C., Thalhammer, A., Specht, C. G., Lynn, A. J., Baker, P. R., Schoepfer, R., et al. (2008). Quantitative analysis of synaptic phosphorylation and protein expression. Molecular and Cellular Proteomics, 7(4), 684–696. doi:10.1074/mcp.M700170-MCP200.

    CAS  PubMed  Google Scholar 

  • Tropea, D., Giacometti, E., Wilson, N. R., Beard, C., McCurry, C., Fu, D. D., et al. (2009). Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proceedings of the National Academy of Sciences USA, 106(6), 2029–2034. doi:10.1073/pnas.0812394106.

    CAS  Google Scholar 

  • Tsujimura, K., Abematsu, M., Kohyama, J., Namihira, M., & Nakashima, K. (2009). Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Experimental Neurology, 219(1), 104–111. doi:10.1016/j.expneurol.2009.05.001.

    CAS  PubMed  Google Scholar 

  • Tudor, M., Akbarian, S., Chen, R. Z., & Jaenisch, R. (2002). Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proceedings of the National Academy of Sciences USA, 99(24), 15536–15541. doi:10.1073/pnas.242566899.

    CAS  Google Scholar 

  • Tunc-Ozcan, E., Ullmann, T. M., Shukla, P. K., & Redei, E. E. (2013). Low-dose thyroxine attenuates autism-associated adverse effects of fetal alcohol in male offspring’s social behavior and hippocampal gene expression. Alcoholism, Clinical and Experimental Research,. doi:10.1111/acer.12183.

    PubMed  Google Scholar 

  • Urdinguio, R. G., Fernandez, A. F., Lopez-Nieva, P., Rossi, S., Huertas, D., Kulis, M., et al. (2010). Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics, 5(7), 656–663. doi:10.4161/epi.5.7.13055.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanhala, R., Gaily, E., Paetau, A., & Riikonen, R. (1998). Pons tumour behind a phenotypic Rett syndrome presentation. Developmental Medicine and Child Neurology, 40(12), 836–839.

    CAS  PubMed  Google Scholar 

  • Vecsler, M., Ben Zeev, B., Nudelman, I., Anikster, Y., Simon, A. J., Amariglio, N., et al. (2011). Ex vivo treatment with a novel synthetic aminoglycoside NB54 in primary fibroblasts from Rett syndrome patients suppresses MECP2 nonsense mutations. PLoS ONE, 6(6), e20733. doi:10.1371/journal.pone.0020733.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volkmann, I., Kumarswamy, R., Pfaff, N., Fiedler, J., Dangwal, S., Holzmann, A., et al. (2013). MicroRNA-mediated epigenetic silencing of Sirtuin1 contributes to impaired angiogenic responses. Circulation Research,. doi:10.1161/CIRCRESAHA.113.301702.

    PubMed  Google Scholar 

  • Vora, P., Mina, R., Namaka, M., & Frost, E. E. (2010). A novel transcriptional regulator of myelin gene expression: Implications for neurodevelopmental disorders. NeuroReport, 21(14), 917–921. doi:10.1097/WNR.0b013e32833da500.

    CAS  PubMed  Google Scholar 

  • Wada, R., Akiyama, Y., Hashimoto, Y., Fukamachi, H., & Yuasa, Y. (2010). miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. International Journal of Cancer, 127(5), 1106–1114. doi:10.1002/ijc.25126.

    CAS  Google Scholar 

  • Wang, Y., Liu, C., Guo, Q. L., Yan, J. Q., Zhu, X. Y., Huang, C. S., et al. (2011). Intrathecal 5-azacytidine inhibits global DNA methylation and methyl-CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury. Brain Research, 1418, 64–69. doi:10.1016/j.brainres.2011.08.040.

    CAS  PubMed  Google Scholar 

  • Wang, I. T., Reyes, A. R., & Zhou, Z. (2013a). Neuronal morphology in MeCP2 mouse models is intrinsically variable and depends on age, cell type, and Mecp2 mutation. Neurobiology of Diseases, 58C, 3–12. doi:10.1016/j.nbd.2013.04.020.

    Google Scholar 

  • Wang, J. T., Wu, T. T., Bai, L., Ding, L., Hao, M., & Wang, Y. (2013b). Effect of folate in modulating the expression of DNA methyltransferase 1 and methyl-CpG-bingding protein 2 in cervical cancer cell lines. Zhonghua Liu Xing Bing Xue Za Zhi, 34(2), 173–177.

    PubMed  Google Scholar 

  • Warita, K., Mitsuhashi, T., Ohta, K., Suzuki, S., Hoshi, N., Miki, T., et al. (2013). Gene expression of epigenetic regulatory factors related to primary silencing mechanism is less susceptible to lower doses of bisphenol A in embryonic hypothalamic cells. Journal of Toxicological Sciences, 38(2), 285–289.

    CAS  PubMed  Google Scholar 

  • Watson, P., Black, G., Ramsden, S., Barrow, M., Super, M., Kerr, B., et al. (2001). Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. Journal of Medical Genetics, 38(4), 224–228.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weaving, L. S., Christodoulou, J., Williamson, S. L., Friend, K. L., McKenzie, O. L., Archer, H., et al. (2004). Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. American Journal of Human Genetics, 75(6), 1079–1093. doi:10.1086/426462.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weaving, L. S., Williamson, S. L., Bennetts, B., Davis, M., Ellaway, C. J., Leonard, H., et al. (2003). Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype. American Journal of Medical Genetics: Part A, 118A(2), 103–114. doi:10.1002/ajmg.a.10053.

    Google Scholar 

  • Wither, R. G., Lang, M., Zhang, L., & Eubanks, J. H. (2013). Regional MeCP2 expression levels in the female MeCP2-deficient mouse brain correlate with specific behavioral impairments. Experimental Neurology, 239, 49–59. doi:10.1016/j.expneurol.2012.09.005.

    CAS  PubMed  Google Scholar 

  • Woodyatt, G. C., & Ozanne, A. E. (1993). A longitudinal study of cognitive skills and communication behaviours in children with Rett syndrome. Journal of Intellectual Disability Research, 37(Pt 4), 419–435.

    PubMed  Google Scholar 

  • Wu, S. H., & Camarena, V. (2009). MeCP2 function in the basolateral amygdala in Rett syndrome. Journal of Neuroscience, 29(32), 9941–9942. doi:10.1523/JNEUROSCI.2540-09.2009.

    CAS  PubMed  Google Scholar 

  • Wu, W., Gu, W., Xu, X., Shang, S., & Zhao, Z. (2012). Downregulation of CNPase in a MeCP2 deficient mouse model of Rett syndrome. Neurological Research, 34(2), 107–113. doi:10.1179/016164111X13214359296301.

    CAS  PubMed  Google Scholar 

  • Wu, H., Tao, J., Chen, P. J., Shahab, A., Ge, W., Hart, R. P., et al. (2010). Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences USA, 107(42), 18161–18166. doi:10.1073/pnas.1005595107.

    CAS  Google Scholar 

  • Xinhua, B., Shengling, J., Fuying, S., Hong, P., Meirong, L., & Wu, X. R. (2008). X chromosome inactivation in Rett Syndrome and its correlations with MECP2 mutations and phenotype. Journal of Child Neurology, 23(1), 22–25. doi:10.1177/0883073807307077.

    Google Scholar 

  • Xu, X., Jin, H., Liu, Y., Liu, L., Wu, Q., Guo, Y., et al. (2012a). The expression patterns and correlations of claudin-6, methy-CpG binding protein 2, DNA methyltransferase 1, histone deacetylase 1, acetyl-histone H3 and acetyl-histone H4 and their clinicopathological significance in breast invasive ductal carcinomas. Diagnostic Pathology, 7, 33. doi:10.1186/1746-1596-7-33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu, X., Xu, Q., Zhang, Y., Zhang, X., Cheng, T., Wu, B., et al. (2012b). A case report of Chinese brothers with inherited MECP2-containing duplication: Autism and intellectual disability, but not seizures or respiratory infections. BMC Medical Genetics, 13, 75. doi:10.1186/1471-2350-13-75.

    PubMed Central  PubMed  Google Scholar 

  • Yaqinuddin, A., Abbas, F., Naqvi, S. Z., Bashir, M. U., Qazi, R., & Qureshi, S. A. (2008). Silencing of MBD1 and MeCP2 in prostate-cancer-derived PC3 cells produces differential gene expression profiles and cellular phenotypes. Bioscience Reports, 28(6), 319–326. doi:10.1042/BSR20080032.

    CAS  PubMed  Google Scholar 

  • Yasui, D. H., Gonzales, M. L., Aflatooni, J. O., Crary, F. K., Hu, D. J., Gavino, B. J., et al. (2014). Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Human Molecular Genetics,. doi:10.1093/hmg/ddt640.

    PubMed  Google Scholar 

  • Yasui, D. H., Peddada, S., Bieda, M. C., Vallero, R. O., Hogart, A., Nagarajan, R. P., et al. (2007). Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proceedings of the National Academy of Sciences USA, 104(49), 19416–19421. doi:10.1073/pnas.0707442104.

    CAS  Google Scholar 

  • Yasui, D. H., Xu, H., Dunaway, K. W., Lasalle, J. M., Jin, L. W., & Maezawa, I. (2013). MeCP2 modulates gene expression pathways in astrocytes. Molecular Autism, 4(1), 3. doi:10.1186/2040-2392-4-3.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young, D. J., Bebbington, A., Anderson, A., Ravine, D., Ellaway, C., Kulkarni, A., et al. (2008). The diagnosis of autism in a female: Could it be Rett syndrome? European Journal of Pediatrics, 167(6), 661–669. doi:10.1007/s00431-007-0569-x.

    PubMed  Google Scholar 

  • Young, J. I., Hong, E. P., Castle, J. C., Crespo-Barreto, J., Bowman, A. B., Rose, M. F., et al. (2005). Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proceedings of the National Academy of Sciences USA, 102(49), 17551–17558. doi:10.1073/pnas.0507856102.

    CAS  Google Scholar 

  • Yu, D., Sakurai, F., & Corey, D. R. (2011). Clonal Rett Syndrome cell lines to test compounds for activation of wild-type MeCP2 expression. Bioorganic & Medicinal Chemistry Letters, 21(18), 5202–5205. doi:10.1016/j.bmcl.2011.07.053.

    CAS  Google Scholar 

  • Zachariah, R. M., Olson, C. O., Ezeonwuka, C., & Rastegar, M. (2012). Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS ONE, 7(11), e49763. doi:10.1371/journal.pone.0049763.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zachariah, R. M., & Rastegar, M. (2012). Linking epigenetics to human disease and Rett syndrome: The emerging novel and challenging concepts in MeCP2 research. Neural Plasticity, 2012, 415825. doi:10.1155/2012/415825.

    PubMed Central  PubMed  Google Scholar 

  • Zanella, S., Mebarek, S., Lajard, A. M., Picard, N., Dutschmann, M., & Hilaire, G. (2008). Oral treatment with desipramine improves breathing and life span in Rett syndrome mouse model. Respiratory Physiology & Neurobiology, 160(1), 116–121. doi:10.1016/j.resp.2007.08.009.

    CAS  Google Scholar 

  • Zhong, X., Li, H., & Chang, Q. (2012). MeCP2 phosphorylation is required for modulating synaptic scaling through mGluR5. Journal of Neuroscience, 32(37), 12841–12847. doi:10.1523/JNEUROSCI.2784-12.2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, Z., Hong, E. J., Cohen, S., Zhao, W. N., Ho, H. Y., Schmidt, L., et al. (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2), 255–269. doi:10.1016/j.neuron.2006.09.037.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou, P., Lu, Y., & Sun, X. H. (2011). Zebularine suppresses TGF-beta-induced lens epithelial cell-myofibroblast transdifferentiation by inhibiting MeCP2. Molecular Vision, 17, 2717–2723.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zlatanova, J. (2005). MeCP2: The chromatin connection and beyond. Biochemistry and Cell Biology, 83(3), 251–262. doi:10.1139/o05-048.

    CAS  PubMed  Google Scholar 

  • Zocchi, L., & Sassone-Corsi, P. (2012). SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics, 7(7), 695–700. doi:10.4161/epi.20733.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zoll, B., Huppke, P., Wessel, A., Bartels, I., & Laccone, F. (2004). Fetal alcohol syndrome in association with Rett syndrome. Genetic Counseling, 15(2), 207–212.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize that due to space limitations, many excellent papers could not be included in this review. We thank all members of the Rastegar laboratory for helpful discussions. The research in the Rastegar Laboratory is supported by funds from Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant 372405-2009), Canadian Institute of Health Research (CIHR Team Grant TEC-128094, and CIHR Catalyst Grant CEN-132383), The Health Sciences Centre Foundation (HSCF), Scottish Rite Charitable Foundation of Canada (SRCFC, Grant 10110), and Graduate Enhancement of Tri-council Stipend (GETS). VRBL is a recipient of MHRC/UMGF studentship award.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojgan Rastegar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liyanage, V.R.B., Rastegar, M. Rett Syndrome and MeCP2. Neuromol Med 16, 231–264 (2014). https://doi.org/10.1007/s12017-014-8295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8295-9

Keywords

Navigation