Skip to main content

Advertisement

Log in

Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Vitiligo is an acquired chronic depigmenting disorder of the skin, with an estimated prevalence of 0.5% of the general population, characterized by the development of white macules resulting from a loss of epidermal melanocytes. The nomenclature has been revised after an extensive international work within the vitiligo global issues consensus conference, and vitiligo (formerly non-segmental vitiligo) is now a consensus umbrella term for all forms of generalized vitiligo. Two other subsets of vitiligo are segmental vitiligo and unclassified/undetermined vitiligo, which corresponds to focal disease and rare variants. A series of hypopigmented disorders may masquerade as vitiligo, and some of them need to be ruled out by specific procedures including a skin biopsy. Multiple mechanisms are involved in melanocyte disappearance, namely genetic predisposition, environmental triggers, metabolic abnormalities, impaired renewal, and altered inflammatory and immune responses. The auto-immune/inflammatory theory is the leading hypothesis because (1) vitiligo is often associated with autoimmune diseases; (2) most vitiligo susceptibility loci identified through genome-wide association studies encode immunomodulatory proteins; and (3) prominent immune cell infiltrates are found in the perilesional margin of actively depigmenting skin. However, other studies support melanocyte intrinsic abnormalities with poor adaptation of melanocytes to stressors leading to melanocyte instability in the basal layer, and release of danger signals important for the activation of the immune system. Recent progress in the understanding of immune pathomechanisms opens interesting perspectives for innovative treatment strategies. The proof of concept in humans of targeting of the IFNγ /Th1 pathway is much awaited. The interplay between oxidative stress and altered immune responses suggests that additional strategies aiming at limiting type I interferon activation pathway as background stabilizing therapies could be an interesting approach in vitiligo. This review covers classification and clinical aspects, pathophysiology with emphasis on immunopathogenesis, and promising therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CRT:

Calreticulin

CTL:

Cytotoxic T cells

ER:

Endoplasmic reticulum

HSP:

Heat shock protein

IFN:

Interferon

IL:

Interleukin

NK:

Natural killer

pDCs:

Plasmacytoid dendritic cells

PRR:

Pathogen recognition receptors

ROS:

Reactive oxygen species

SV:

Segmental vitiligo

TLR:

Toll-like receptors

TNF:

Tumour necrosis factor

Tregs:

Regulatory T cells

UPR:

Unfolded protein response

VGICC:

Vitiligo Global Issues Consensus Conference

VETF:

Vitiligo European task force

References

  1. Taïeb A, Picardo M (2009) Clinical practice. Vitiligo. N Engl J Med 360:160–169. doi:10.1056/NEJMcp0804388

    Article  PubMed  Google Scholar 

  2. Picardo M, Dell’Anna ML, Ezzedine K et al (2015) Vitiligo. Nat Rev Dis Primer 1:15011. doi:10.1038/nrdp.2015.11

    Article  Google Scholar 

  3. Taïeb A, Seneschal J, Mazereeuw-Hautier J (2017) Special considerations in children with vitiligo. Dermatol Clin 35:229–233. doi:10.1016/j.det.2016.11.011

    Article  PubMed  CAS  Google Scholar 

  4. Dell’anna ML, Picardo M (2006) A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo. Pigment Cell Res Spons Eur Soc Pigment Cell Res Int Pigment Cell Soc 19:406–411. doi:10.1111/j.1600-0749.2006.00333.x

    Article  Google Scholar 

  5. Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK (1996) Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol 148:1219–1228

    PubMed  PubMed Central  Google Scholar 

  6. Sandoval-Cruz M, García-Carrasco M, Sánchez-Porras R et al (2011) Immunopathogenesis of vitiligo. Autoimmun Rev 10:762–765. doi:10.1016/j.autrev.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  7. Richmond JM, Frisoli ML, Harris JE (2013) Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol 25:676–682. doi:10.1016/j.coi.2013.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Itoi S, Tanemura A, Kotobuki Y et al (2014) Coexistence of Langerhans cells activation and immune cells infiltration in progressive nonsegmental vitiligo. J Dermatol Sci 73:83–85. doi:10.1016/j.jdermsci.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  9. Wang CQF, Cruz-Inigo AE, Fuentes-Duculan J et al (2011) Th17 cells and activated dendritic cells are increased in vitiligo lesions. PLoS One 6:e18907. doi:10.1371/journal.pone.0018907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bertolotti A, Boniface K, Vergier B et al (2014) Type I interferon signature in the initiation of the immune response in vitiligo. Pigment Cell Melanoma Res 27:398–407. doi:10.1111/pcmr.12219

    Article  CAS  PubMed  Google Scholar 

  11. Le Poole IC, Das PK, van den Wijngaard RM et al (1993) Review of the etiopathomechanism of vitiligo: a convergence theory. Exp Dermatol 2:145–153

    Article  PubMed  Google Scholar 

  12. Ezzedine K, Lim HW, Suzuki T et al (2012) Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res 25:E1–13. doi:10.1111/j.1755-148X.2012.00997.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Njoo MD, Das PK, Bos JD, Westerhof W (1999) Association of the Köbner phenomenon with disease activity and therapeutic responsiveness in vitiligo vulgaris. Arch Dermatol 135:407–413

    CAS  PubMed  Google Scholar 

  14. van Geel N, Speeckaert R, Taieb A et al (2011) Koebner’s phenomenon in vitiligo: European position paper. Pigment Cell Melanoma Res 24:564–573. doi:10.1111/j.1755-148X.2011.00838.x

    Article  PubMed  Google Scholar 

  15. Ezzedine K, Gauthier Y, Léauté-Labrèze C et al (2011) Segmental vitiligo associated with generalized vitiligo (mixed vitiligo): a retrospective case series of 19 patients. J Am Acad Dermatol 65:965–971. doi:10.1016/j.jaad.2010.08.031

    Article  PubMed  Google Scholar 

  16. Ezzedine K, Le Thuaut A, Jouary T et al (2014) Latent class analysis of a series of 717 patients with vitiligo allows the identification of two clinical subtypes. Pigment Cell Melanoma Res 27:134–139. doi:10.1111/pcmr.12186

    Article  CAS  PubMed  Google Scholar 

  17. Ezzedine K, Mahé A, van Geel N et al (2015) Hypochromic vitiligo: delineation of a new entity. Br J Dermatol 172:716–721. doi:10.1111/bjd.13423

    Article  CAS  PubMed  Google Scholar 

  18. Ezzedine K, Amazan E, Séneschal J et al (2012) Follicular vitiligo: a new form of vitiligo. Pigment Cell Melanoma Res 25:527–529. doi:10.1111/j.1755-148X.2012.00999.x

    Article  PubMed  Google Scholar 

  19. Gan EY, Cario-André M, Pain C et al (2016) Follicular vitiligo: a report of 8 cases. J Am Acad Dermatol 74:1178–1184. doi:10.1016/j.jaad.2015.12.049

    Article  PubMed  Google Scholar 

  20. Maresca V, Roccella M, Roccella F et al (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109:310–313

    Article  CAS  PubMed  Google Scholar 

  21. Boissy RE, Manga P (2004) On the etiology of contact/occupational vitiligo. Pigment Cell Res Spons Eur Soc Pigment Cell Res Int Pigment Cell Soc 17:208–214. doi:10.1111/j.1600-0749.2004.00130.x

    Article  CAS  Google Scholar 

  22. Dell’Anna ML, Maresca V, Briganti S et al (2001) Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo. J Invest Dermatol 117:908–913. doi:10.1046/j.0022-202x.2001.01459.x

    Article  PubMed  Google Scholar 

  23. Sahoo A, Lee B, Boniface K et al (2017) MicroRNA-211 regulates oxidative phosphorylation and energy metabolism in human vitiligo. J Invest Dermatol. doi:10.1016/j.jid.2017.04.025

  24. Xie H, Zhou F, Liu L et al (2016) Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci 81:3–9. doi:10.1016/j.jdermsci.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  25. Bellei B, Pitisci A, Ottaviani M et al (2013) Vitiligo: a possible model of degenerative diseases. PLoS One 8:e59782. doi:10.1371/journal.pone.0059782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toosi S, Orlow SJ, Manga P (2012) Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol 132:2601–2609. doi:10.1038/jid.2012.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen J-J, Huang W, Gui J-P et al (2005) A novel linkage to generalized vitiligo on 4q13-q21 identified in a genomewide linkage analysis of Chinese families. Am J Hum Genet 76:1057–1065. doi:10.1086/430279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren Y, Yang S, Xu S et al (2009) Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet 5:e1000523. doi:10.1371/journal.pgen.1000523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Birlea SA, Jin Y, Bennett DC et al (2011) Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol 131:371–381. doi:10.1038/jid.2010.337

    Article  CAS  PubMed  Google Scholar 

  30. He Y, Li S, Zhang W et al (2017) Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo. Sci Rep 7:42394. doi:10.1038/srep42394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rezk AF, Kemp DM, El-Domyati M et al (2017) Misbalanced CXCL12 and CCL5 chemotactic signals in vitiligo onset and progression. J Invest Dermatol. doi:10.1016/j.jid.2016.12.028

  32. Wagner RY, Luciani F, Cario-André M et al (2015) Altered E-cadherin levels and distribution in melanocytes precede clinical manifestations of Vitiligo. J Invest Dermatol 135:1810–1819. doi:10.1038/jid.2015.25

    Article  CAS  PubMed  Google Scholar 

  33. Li S, Zhu G, Yang Y et al (2016) Oxidative stress drives CD8(+) T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol. doi:10.1016/j.jaci.2016.10.013

  34. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361. doi:10.1038/nri3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demaria O, Di Domizio J, Gilliet M (2014) Immune sensing of nucleic acids in inflammatory skin diseases. Semin Immunopathol 36:519–529. doi:10.1007/s00281-014-0445-5

    Article  CAS  PubMed  Google Scholar 

  36. Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745. doi:10.1038/35047123

    Article  CAS  PubMed  Google Scholar 

  37. Heil F, Hemmi H, Hochrein H et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529. doi:10.1126/science.1093620

    Article  CAS  PubMed  Google Scholar 

  38. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738. doi:10.1038/35099560

    Article  CAS  PubMed  Google Scholar 

  39. Kerur N, Veettil MV, Sharma-Walia N et al (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe 9:363–375. doi:10.1016/j.chom.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518. doi:10.1038/nature07725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. doi:10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  42. Marie J, Kovacs D, Pain C et al (2014) Inflammasome activation and vitiligo/nonsegmental vitiligo progression. Br J Dermatol 170:816–823. doi:10.1111/bjd.12691

    Article  CAS  PubMed  Google Scholar 

  43. Shu C, Li X, Li P (2014) The mechanism of double-stranded DNA sensing through the cGAS-STING pathway. Cytokine Growth Factor Rev 25:641–648. doi:10.1016/j.cytogfr.2014.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoneyama M, Kikuchi M, Natsukawa T et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737. doi:10.1038/ni1087

    Article  CAS  PubMed  Google Scholar 

  45. Denman CJ, McCracken J, Hariharan V et al (2008) HSP70i accelerates depigmentation in a mouse model of autoimmune vitiligo. J Invest Dermatol 128:2041–2048. doi:10.1038/jid.2008.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mosenson JA, Zloza A, Nieland JD et al (2013) Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med 5:174ra28. doi:10.1126/scitranslmed.3005127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Spritz RA (2013) Modern vitiligo genetics sheds new light on an ancient disease. J Dermatol 40:310–318. doi:10.1111/1346-8138.12147

    Article  CAS  PubMed  Google Scholar 

  48. Jin Y, Andersen GHL, Santorico SA, Spritz RA (2017) Multiple functional variants of IFIH1, a gene involved in triggering innate immune responses, protect against vitiligo. J Invest Dermatol 137:522–524. doi:10.1016/j.jid.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  49. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837. doi:10.1038/nri2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacquemin C, Rambert J, Guillet S et al (2017) HSP70 potentiates interferon-alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. Br J Dermatol. doi:10.1111/bjd.15550

  51. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195. doi:10.1038/nature00858

    Article  CAS  PubMed  Google Scholar 

  52. Tian J, Avalos AM, Mao S-Y et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496. doi:10.1038/ni1457

    Article  CAS  PubMed  Google Scholar 

  53. Kim JY, Lee EJ, Seo J, Oh SH (2016) Impact of HMGB1 on melanocytic survival and its involvement in the pathogenesis of vitiligo. Br J Dermatol. doi:10.1111/bjd.15151

  54. Zhang Y, Liu L, Jin L et al (2014) Oxidative stress-induced calreticulin expression and translocation: new insights into the destruction of melanocytes. J Invest Dermatol 134:183–191. doi:10.1038/jid.2013.268

    Article  CAS  PubMed  Google Scholar 

  55. Speeckaert R, Voet S, Hoste E, van Geel N (2017) S100B is a potential disease activity marker in non-segmental vitiligo. J Invest Dermatol. doi:10.1016/j.jid.2017.01.033

  56. Yu R, Broady R, Huang Y et al (2012) Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS One 7:e51040. doi:10.1371/journal.pone.0051040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jin Y, Birlea SA, Fain PR et al (2011) Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset. J Invest Dermatol 131:1308–1312. doi:10.1038/jid.2011.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spritz RA (2011) The genetics of vitiligo. J Invest Dermatol 131:E18–E20. doi:10.1038/skinbio.2011.7

    Article  PubMed  PubMed Central  Google Scholar 

  59. Badri AM, Todd PM, Garioch JJ et al (1993) An immunohistological study of cutaneous lymphocytes in vitiligo. J Pathol 170:149–155. doi:10.1002/path.1711700209

    Article  CAS  PubMed  Google Scholar 

  60. Dwivedi M, Kemp EH, Laddha NC et al (2015) Regulatory T cells in vitiligo: implications for pathogenesis and therapeutics. Autoimmun Rev 14:49–56. doi:10.1016/j.autrev.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  61. Steitz J, Wenzel J, Gaffal E, Tüting T (2004) Initiation and regulation of CD8+T cells recognizing melanocytic antigens in the epidermis: implications for the pathophysiology of vitiligo. Eur J Cell Biol 83:797–803. doi:10.1078/0171-9335-00423

    Article  CAS  PubMed  Google Scholar 

  62. Lambe T, Leung JCH, Bouriez-Jones T et al (1950) (2006) CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interactions. J Immunol Baltim Md 177:3055–3062

    Google Scholar 

  63. Gattinoni L, Ranganathan A, Surman DR et al (2006) CTLA-4 dysregulation of self/tumor-reactive CD8+ T-cell function is CD4+ T-cell dependent. Blood 108:3818–3823. doi:10.1182/blood-2006-07-034066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muranski P, Boni A, Antony PA et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373. doi:10.1182/blood-2007-11-120998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wańkowicz-Kalińska A, van den Wijngaard RMJGJ, Tigges BJ et al (2003) Immunopolarization of CD4+ and CD8+ T cells to type-1-like is associated with melanocyte loss in human vitiligo. Lab Investig J Tech Methods Pathol 83:683–695

    Article  CAS  Google Scholar 

  66. Basak PY, Adiloglu AK, Ceyhan AM et al (2009) The role of helper and regulatory T cells in the pathogenesis of vitiligo. J Am Acad Dermatol 60:256–260. doi:10.1016/j.jaad.2008.09.048

    Article  PubMed  Google Scholar 

  67. Bassiouny DA, Shaker O (2011) Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol 36:292–297. doi:10.1111/j.1365-2230.2010.03972.x

    Article  CAS  PubMed  Google Scholar 

  68. Kotobuki Y, Tanemura A, Yang L et al (2011) Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res. doi:10.1111/j.1755-148X.2011.00945.x

  69. Elela MA, Hegazy RA, Fawzy MM et al (2013) Interleukin 17, interleukin 22 and FoxP3 expression in tissue and serum of non-segmental vitiligo: a case-controlled study on eighty-four patients. Eur J Dermatol EJD 23:350–355. doi:10.1684/ejd.2013.2023

    PubMed  Google Scholar 

  70. Kotobuki Y, Tanemura A, Yang L et al (2012) Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res 25:219–230. doi:10.1111/j.1755-148X.2011.00945.x

    Article  CAS  PubMed  Google Scholar 

  71. Wang CQF, Akalu YT, Suarez-Farinas M et al (2013) IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis. J Invest Dermatol 133:2741–2752. doi:10.1038/jid.2013.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abdallah M, Lotfi R, Othman W, Galal R (2014) Assessment of tissue FoxP3+, CD4+ and CD8+ T-cells in active and stable nonsegmental vitiligo. Int J Dermatol 53:940–946. doi:10.1111/ijd.12160

    Article  CAS  PubMed  Google Scholar 

  73. Klarquist J, Denman CJ, Hernandez C et al (2010) Reduced skin homing by functional Treg in vitiligo. Pigment Cell Melanoma Res 23:276–286. doi:10.1111/j.1755-148X.2010.00688.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ben Ahmed M, Zaraa I, Rekik R et al (2012) Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res 25:99–109. doi:10.1111/j.1755-148X.2011.00920.x

    Article  CAS  PubMed  Google Scholar 

  75. Lili Y, Yi W, Ji Y et al (2012) Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 7:e37513. doi:10.1371/journal.pone.0037513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chatterjee S, Eby JM, Al-Khami AA et al (2014) A quantitative increase in regulatory T cells controls development of vitiligo. J Invest Dermatol 134:1285–1294. doi:10.1038/jid.2013.540

    Article  CAS  PubMed  Google Scholar 

  77. Ogg GS, Rod Dunbar P, Romero P et al (1998) High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med 188:1203–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Palermo B, Campanelli R, Garbelli S et al (2001) Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol 117:326–332. doi:10.1046/j.1523-1747.2001.01408.x

    Article  CAS  PubMed  Google Scholar 

  79. Lang KS, Caroli CC, Muhm A et al (2001) HLA-A2 restricted, melanocyte-specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1. J Invest Dermatol 116:891–897. doi:10.1046/j.1523-1747.2001.01363.x

    Article  CAS  PubMed  Google Scholar 

  80. Mandelcorn-Monson RL, Shear NH, Yau E et al (2003) Cytotoxic T lymphocyte reactivity to gp100, MelanA/MART-1, and tyrosinase, in HLA-A2-positive vitiligo patients. J Invest Dermatol 121:550–556. doi:10.1046/j.1523-1747.2003.12413.x

    Article  CAS  PubMed  Google Scholar 

  81. Adams S, Lowes MA, O’Neill DW et al (2008) Lack of functionally active Melan-A(26-35)-specific T cells in the blood of HLA-A2+ vitiligo patients. J Invest Dermatol 128:1977–1980. doi:10.1038/jid.2008.31

    Article  CAS  PubMed  Google Scholar 

  82. van den Boorn JG, Konijnenberg D, Dellemijn TAM et al (2009) Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol 129:2220–2232. doi:10.1038/jid.2009.32

    Article  PubMed  CAS  Google Scholar 

  83. Maeda Y, Nishikawa H, Sugiyama D et al (2014) Detection of self-reactive CD8+ T cells with an anergic phenotype in healthy individuals. Science 346:1536–1540. doi:10.1126/science.aaa1292

    Article  CAS  PubMed  Google Scholar 

  84. Kawakami Y, Suzuki Y, Shofuda T et al (2000) T cell immune responses against melanoma and melanocytes in cancer and autoimmunity. Pigment Cell Res Spons Eur Soc Pigment Cell Res Int Pigment Cell Soc 13(Suppl 8):163–169

    Article  Google Scholar 

  85. Yee C, Thompson JA, Roche P et al (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 192:1637–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C et al (2000) Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Investig J Tech Methods Pathol 80:1299–1309

    Article  Google Scholar 

  87. Wu J, Zhou M, Wan Y, Xu A (2013) CD8+ T cells from vitiligo perilesional margins induce autologous melanocyte apoptosis. Mol Med Rep 7:237–241. doi:10.3892/mmr.2012.1117

    Article  CAS  PubMed  Google Scholar 

  88. Gregg RK, Nichols L, Chen Y et al (2010) Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immunol Baltim Md 1950 184:1909–1917. doi:10.4049/jimmunol.0902778

    CAS  Google Scholar 

  89. You S, Cho Y-H, Byun J-S, Shin E-C (2013) Melanocyte-specific CD8+ T cells are associated with epidermal depigmentation in a novel mouse model of vitiligo. Clin Exp Immunol 174:38–44. doi:10.1111/cei.12146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harris JE, Harris TH, Weninger W et al (2012) A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol 132:1869–1876. doi:10.1038/jid.2011.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Webb KC, Tung R, Winterfield LS et al (2015) Tumour necrosis factor-α inhibition can stabilize disease in progressive vitiligo. Br J Dermatol 173:641–650. doi:10.1111/bjd.14016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Larsabal M, Marti A, Jacquemin C et al (2017) Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J Am Acad Dermatol. doi:10.1016/j.jaad.2016.10.044

  93. Rashighi M, Agarwal P, Richmond JM et al (2014) CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med 6:223ra23. doi:10.1126/scitranslmed.3007811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Richmond JM, Masterjohn E, Chu R et al (2017) CXCR3 depleting antibodies prevent and reverse vitiligo in mice. J Invest Dermatol. doi:10.1016/j.jid.2016.10.048

  95. Yang L, Wei Y, Sun Y et al (2015) Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: a pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol 95:664–670. doi:10.2340/00015555-2080

    Article  CAS  PubMed  Google Scholar 

  96. Wang S, Zhou M, Lin F et al (2014) Interferon-γ induces senescence in normal human melanocytes. PLoS One 9:e93232. doi:10.1371/journal.pone.0093232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Natarajan VT, Ganju P, Singh A et al (2014) IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc Natl Acad Sci U S A 111:2301–2306. doi:10.1073/pnas.1304988111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Camara-Lemarroy CR, Salas-Alanis JC (2013) The role of tumor necrosis factor-α in the pathogenesis of vitiligo. Am J Clin Dermatol 14:343–350. doi:10.1007/s40257-013-0039-3

    Article  PubMed  Google Scholar 

  99. Swope VB, Abdel-Malek Z, Kassem LM, Nordlund JJ (1991) Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol 96:180–185

    Article  CAS  PubMed  Google Scholar 

  100. Englaro W, Bahadoran P, Bertolotto C et al (1999) Tumor necrosis factor alpha-mediated inhibition of melanogenesis is dependent on nuclear factor kappa B activation. Oncogene 18:1553–1559. doi:10.1038/sj.onc.1202446

    Article  CAS  PubMed  Google Scholar 

  101. Clark RA, Chong B, Mirchandani N et al (2006) The vast majority of CLA+ T cells are resident in normal skin. J Immunol Baltim Md 1950 176:4431–4439

    CAS  Google Scholar 

  102. Watanabe R, Gehad A, Yang C et al (2015) Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 7:279ra39. doi:10.1126/scitranslmed.3010302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Park CO, Kupper TS (2015) The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat Med 21:688–697. doi:10.1038/nm.3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Seneschal J, Clark RA, Gehad A et al (2012) Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36:873–884. doi:10.1016/j.immuni.2012.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cheuk S, Schlums H, Gallais Sérézal I et al (2017) CD49a expression defines tissue-resident CD8(+) T cells poised for cytotoxic function in human skin. Immunity 46:287–300. doi:10.1016/j.immuni.2017.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spritz RA (2010) Genetics. In: Picardo M, Taïeb A (eds) Vitiligo. Springer, Berlin, pp 155–162

    Chapter  Google Scholar 

  107. Jin Y, Andersen G, Yorgov D et al (2016) Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet 48:1418–1424. doi:10.1038/ng.3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alenizi DA (2014) Consanguinity pattern and heritability of vitiligo in Arar, Saudi Arabia. J Fam Community Med 21:13–16. doi:10.4103/2230-8229.128767

    Article  Google Scholar 

  109. Gey A, Diallo A, Seneschal J et al (2013) Autoimmune thyroid disease in vitiligo: multivariate analysis indicates intricate pathomechanisms. Br J Dermatol 168:756–761. doi:10.1111/bjd.12166

    Article  CAS  PubMed  Google Scholar 

  110. Ezzedine K, Diallo A, Léauté-Labrèze C et al (2012) Pre- vs. post-pubertal onset of vitiligo: multivariate analysis indicates atopic diathesis association in pre-pubertal onset vitiligo. Br J Dermatol 167:490–495. doi:10.1111/j.1365-2133.2012.11002.x

    Article  CAS  PubMed  Google Scholar 

  111. Taïeb A, Ezzedine K (2013) Vitiligo: the white armour? Pigment Cell Melanoma Res. doi:10.1111/pcmr.12076

  112. Gan EY, Eleftheriadou V, Esmat S et al (2017) Repigmentation in vitiligo: position paper of the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res 30:28–40. doi:10.1111/pcmr.12561

    Article  PubMed  Google Scholar 

  113. Taïeb A, Picardo M (2007) The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res Spons Eur Soc Pigment Cell Res Int Pigment Cell Soc 20:27–35. doi:10.1111/j.1600-0749.2006.00355.x

    Article  Google Scholar 

  114. Cavalié M, Ezzedine K, Fontas E et al (2015) Maintenance therapy of adult vitiligo with 0.1% tacrolimus ointment: a randomized, double blind, placebo-controlled study. J Invest Dermatol 135:970–974. doi:10.1038/jid.2014.527

    Article  PubMed  CAS  Google Scholar 

  115. Singh H, Kumaran MS, Bains A, Parsad D (2015) A randomized comparative study of oral corticosteroid minipulse and low-dose oral methotrexate in the treatment of unstable vitiligo. Dermatol Basel Switz 231:286–290. doi:10.1159/000433424

    Article  CAS  Google Scholar 

  116. Ezzedine K, Whitton M, Pinart M (2016) Interventions for vitiligo. JAMA 316:1708–1709. doi:10.1001/jama.2016.12399

    Article  PubMed  Google Scholar 

  117. Eleftheriadou V, Thomas K, Ravenscroft J et al (2014) Feasibility, double-blind, randomised, placebo-controlled, multi-centre trial of hand-held NB-UVB phototherapy for the treatment of vitiligo at home (HI-Light trial: Home Intervention of Light therapy). Trials 15:51. doi:10.1186/1745-6215-15-51

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lee J, Chu H, Lee H et al (2016) A retrospective study of methylprednisolone mini-pulse therapy combined with narrow-band UVB in non-segmental vitiligo. Dermatol Basel Switz 232:224–229. doi:10.1159/000439563

    Article  CAS  Google Scholar 

  119. Taieb A, Alomar A, Böhm M et al (2013) Guidelines for the management of vitiligo: the European Dermatology Forum consensus. Br J Dermatol 168:5–19. doi:10.1111/j.1365-2133.2012.11197.x

    Article  CAS  PubMed  Google Scholar 

  120. Luger T, Boguniewicz M, Carr W et al (2015) Pimecrolimus in atopic dermatitis: consensus on safety and the need to allow use in infants. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol 26:306–315. doi:10.1111/pai.12331

    Article  Google Scholar 

  121. Sassi F, Cazzaniga S, Tessari G et al (2008) Randomized controlled trial comparing the effectiveness of 308-nm excimer laser alone or in combination with topical hydrocortisone 17-butyrate cream in the treatment of vitiligo of the face and neck. Br J Dermatol 159:1186–1191. doi:10.1111/j.1365-2133.2008.08793.x

    CAS  PubMed  Google Scholar 

  122. Kostopoulou P, Jouary T, Quintard B et al (2009) Objective vs. subjective factors in the psychological impact of vitiligo: the experience from a French referral centre. Br J Dermatol 161:128–133. doi:10.1111/j.1365-2133.2009.09077.x

    Article  CAS  PubMed  Google Scholar 

  123. Gawkrodger DJ, Ormerod AD, Shaw L et al (2008) Guideline for the diagnosis and management of vitiligo. Br J Dermatol 159:1051–1076. doi:10.1111/j.1365-2133.2008.08881.x

    Article  CAS  PubMed  Google Scholar 

  124. Sacchidanand S (2008) IADVL dermatosurgery guidelines: charting uncharted territory. Indian J Dermatol Venereol Leprol 74(7):4

  125. Lim HW, Hexsel CL (2007) Vitiligo: to treat or not to treat. Arch Dermatol 143:643–646. doi:10.1001/archderm.143.5.643

    Article  PubMed  Google Scholar 

  126. Anbar TS, Hegazy RA, Picardo M, Taieb A (2014) Beyond vitiligo guidelines: combined stratified/personalized approaches for the vitiligo patient. Exp Dermatol 23:219–223. doi:10.1111/exd.12344

    Article  PubMed  Google Scholar 

  127. Craiglow BG, King BA (2015) Tofacitinib citrate for the treatment of vitiligo: a pathogenesis-directed therapy. JAMA Dermatol 151:1110–1112. doi:10.1001/jamadermatol.2015.1520

    Article  PubMed  Google Scholar 

  128. Harris JE, Rashighi M, Nguyen N et al (2016) Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). J Am Acad Dermatol 74:370–371. doi:10.1016/j.jaad.2015.09.073

    Article  PubMed  Google Scholar 

  129. Rothstein B, Joshipura D, Saraiya A et al (2017) Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J Am Acad Dermatol. doi:10.1016/j.jaad.2017.02.049

  130. Alghamdi KM, Khurrum H, Taieb A, Ezzedine K (2012) Treatment of generalized vitiligo with anti-TNF-α agents. J Drugs Dermatol JDD 11:534–539

    CAS  PubMed  Google Scholar 

  131. Regazzetti C, Joly F, Marty C et al (2015) Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: a promising target for repigmenting vitiligo patients. J Invest Dermatol 135:3105–3114. doi:10.1038/jid.2015.335

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Taïeb.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Funding

None.

Ethical Approval and Informed Consent

Not necessary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boniface, K., Seneschal, J., Picardo, M. et al. Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy. Clinic Rev Allerg Immunol 54, 52–67 (2018). https://doi.org/10.1007/s12016-017-8622-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-017-8622-7

Keywords

Navigation