Skip to main content

Advertisement

Log in

Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AICD:

Activation-induced cell death

APC:

Antigen-presenting cells

CFA:

Complete Freund adjuvant

FasL:

Fas-ligand

GAD:

Glutamic acid decarboxylase

iNOS:

Inducible nitric oxide synthase

IFN:

Interferon

IL:

Interleukin

MHC:

Major histocompatibility complex

MIP-1α:

Macrophage inflammatory protein-1α

MCP-1:

Monocyte chemotactic protein-1

NO:

Nitric oxide

NFkB:

Nuclear factor-kB

nTreg:

Naturally occurring Treg

sFasL:

Soluble FasL

Th:

T helper cell

TNF:

Tumor necrosis factor

TRAIL:

TNF-related apoptosis-inducing ligand

Treg:

Regulatory T cell

TGF-β:

Transforming growth factor-β

T1D:

Type 1 diabetes

References

  1. von Herrath M, Holz A (1997) Pathological changes in the islet milieu precede infiltration of islets and destruction of beta-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J Autoimmun 10:231–238

    Article  Google Scholar 

  2. Aspord C, Rome S, Thivolet C (2004) Early events in islets and pancreatic lymph nodes in autoimmune diabetes. J Autoimmun 23:27–35

    Article  CAS  PubMed  Google Scholar 

  3. Calderon B, Carrero JA, Miller MJ, Unanue ER (2011) Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response. Proc Natl Acad Sci U S A 108:1567–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O'Sullivan BJ, Thomas HE, Pai S, Santamaria P, Iwakura Y, Steptoe RJ, Kay TW, Thomas R (2006) IL-1 beta breaks tolerance through expansion of CD25+ effector T cells. J Immunol 176:7278–7287

    Article  PubMed  Google Scholar 

  5. Kornete M, Beauchemin H, Polychronakos C, Piccirillo CA (2013) Pancreatic islet cell phenotype and endocrine function throughout diabetes development in non-obese diabetic mice. Autoimmunity 46:259–268

    Article  CAS  PubMed  Google Scholar 

  6. Pankewycz OG, Guan JX, Benedict JF (1995) Cytokines as mediators of autoimmune diabetes and diabetic complications. Endocr Rev 16:164–176

    Article  CAS  PubMed  Google Scholar 

  7. Rabinovitch A (1998) An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab Rev 14:129–151

    Article  CAS  PubMed  Google Scholar 

  8. Falcone M, Sarvetnick N (1999) The effect of local production of cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Clin Immunol 90:2–9

    Article  CAS  PubMed  Google Scholar 

  9. Hirai H, Kaino Y, Ito T, Kida K (2000) Analysis of cytokine mRNA expression in pancreatic islets of nonobese diabetic mice. J Pediatr Endocrinol Metab 13:91–98

    Article  CAS  PubMed  Google Scholar 

  10. O'Shea JJ, Ma A, Lipsky P (2002) Cytokines and autoimmunity. Nat Rev Immunol 2:37–45

    Article  PubMed  CAS  Google Scholar 

  11. Kay TW, Darwiche R, Irawaty W, Chong MM, Pennington HL, Thomas HE (2003) The role of cytokines as effectors of tissue destruction in autoimmunity. Adv Exp Med Biol 520:73–86

    Article  CAS  PubMed  Google Scholar 

  12. Donath MY, Storling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 81:455–470

    Article  CAS  PubMed  Google Scholar 

  13. Rabinovitch A, Suarez-Pinzon WL (2003) Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Rev Endocr Metab Disord 4:291–299

    Article  CAS  PubMed  Google Scholar 

  14. Gallichan WS, Balasa B, Davies JD, Sarvetnick N (1999) Pancreatic IL-4 expression results in islet-reactive Th2 cells that inhibit diabetogenic lymphocytes in the nonobese diabetic mouse. J Immunol 163:1696–1703

    CAS  PubMed  Google Scholar 

  15. Leng RX, Pan HF, Tao JH, Ye DQ (2011) IL-19, IL-20 and IL-24: potential therapeutic targets for autoimmune diseases. Expert Opin Ther Targets 15:119–126

    Article  CAS  PubMed  Google Scholar 

  16. Singh B, Nikoopour E, Huszarik K, Elliott JF, Jevnikar AM (2011) Immunomodulation and regeneration of islet beta cells by cytokines in autoimmune type 1 diabetes. J Interferon Cytokine Res 31:711–719

    Article  CAS  PubMed  Google Scholar 

  17. Russell MA, Morgan NG (2014) The impact of anti-inflammatory cytokines on the pancreatic β-cell. Islets 6:e950547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaminitz A, Stein J, Yaniv I, Askenasy N (2007) The vicious cycle of apoptotic beta-cell death in type 1 diabetes. Immunol Cell Biol 85:582–589

    Article  CAS  PubMed  Google Scholar 

  19. Thomas HE, McKenzie MD, Angstetra E, Campbell PD, Kay TW (2009) Beta cell apoptosis in diabetes. Apoptosis 14:1389–1404

    Article  PubMed  Google Scholar 

  20. Donath MY, Böni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA (2010) Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab 21:261–267

    Article  CAS  PubMed  Google Scholar 

  21. Dahlen E, Dawe K, Ohlsson L, Hedlund G (1998) Dendritic cells and macrophages are the first and major producers of TNF-alpha in pancreatic islets in the nonobese diabetic mouse. J Immunol 160:3585–3593

    CAS  PubMed  Google Scholar 

  22. Cameron MJ, Arreaza GA, Grattan M, Meagher C, Sharif S, Burdick MD, Strieter RM, Cook DN, Delovitch TL (2000) Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. J Immunol 165:1102–1110

    Article  CAS  PubMed  Google Scholar 

  23. Rabinovitch A, Suarez-Pinzon WL, Sorensen O (1996) Interleukin 12 mRNA expression in islets correlates with beta-cell destruction in NOD mice. J Autoimmun 9:645–651

    Article  CAS  PubMed  Google Scholar 

  24. Savinov AY, Wong FS, Chervonsky AV (2001) IFN-gamma affects homing of diabetogenic T cells. J Immunol 167:6637–6643

    Article  CAS  PubMed  Google Scholar 

  25. Barbé-Tuana FM, Klein D, Ichii H, Berman DM, Coffey L, Kenyon NS et al (2006) CD40-CD40 ligand interaction activates proinflammatory pathways in pancreatic islets. Diabetes 55:2437–2445

    Article  PubMed  CAS  Google Scholar 

  26. Taylor-Fishwick DA, Weaver JR, Grzesik W, Chakrabarti S, Green-Mitchell S, Imai Y et al (2013) Production and function of IL-12 in islets and beta cells. Diabetologia 56:126–135

    Article  CAS  PubMed  Google Scholar 

  27. Arnush M, Scarim AL, Heitmeier MR, Kelly CB, Corbett JA (1998) Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes. J Immunol 160:2684–2691

    CAS  PubMed  Google Scholar 

  28. Yoon JW, Jun HS, Santamaria P (1998) Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity 27:109–122

    Article  CAS  PubMed  Google Scholar 

  29. Hoglund P, Mintern J, Waltzinger C, Heath W, Benoist C, Mathis D (1999) Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 189:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rovere P, Vallinoto C, Bondanza A, Crosti MC, Rescigno M, Ricciardi-Castagnoli P et al (1998) Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J Immunol 161:4467–4471

    CAS  PubMed  Google Scholar 

  31. Poligone B, Weaver DJ, Sen P, Baldwin AS, Tisch R (2002) Elevated NF-{kappa}B activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J Immunol 168:188–196

    Article  CAS  PubMed  Google Scholar 

  32. Lee LF, Xu B, Michie SA, Beilhack GF, Warganich T, Turley S, Mcdevitt HO (2005) The role of TNF-alpha in the pathogenesis of type 1 diabetes in the nonobese diabetic mouse: analysis of dendritic cell maturation. Proc Natl Acad Sci U S A 102:15995–16000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gagnerault MC, Luan JJ, Lotton C, Lepault F (2002) Pancreatic lymph nodes are required for priming of β cell reactive T cells in NOD mice. J Exp Med 196:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaakkola I, Jalkanen S, Hänninen A (2003) Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur J Immunol 33:3255–3264

    Article  CAS  PubMed  Google Scholar 

  35. Pearl-Yafe M, Iskovich S, Kaminitz A, Stein J, Yaniv I, Askenasy N (2006) Does physiological beta cell turnover initiate autoimmune diabetes in the regional lymph nodes? Autoimmun Rev 5:338–343

    Article  PubMed  Google Scholar 

  36. Graham KL, Krishnamurthy B, Fynch S, Mollah ZU, Slattery R, Santamaria P et al (2011) Autoreactive cytotoxic T lymphocytes acquire higher expression of cytotoxic effector markers in the islets of NOD mice after priming in pancreatic lymph nodes. Am J Pathol 178:2716–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Picarella DE, Kratz A, Li CB, Ruddle NH, Flavell RA (1993) Transgenic tumor necrosis factor (TNF)-alpha production in pancreatic islets leads to insulitis, not diabetes. Distinct patterns of inflammation in TNF-alpha and TNF-beta transgenic mice. J Immunol 150:4136–4150

    CAS  PubMed  Google Scholar 

  38. Frigerio S, Junt T, Lu B, Gerard C, Zumsteg U, Holländer GA, Piali L (2002) Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat Med 8:1414–1420

    Article  CAS  PubMed  Google Scholar 

  39. Carvalho-Pinto C, García MI, Gómez L, Ballesteros A, Zaballos A, Flores JM, Mellado M, Rodríguez-Frade JM et al (2004) Leukocyte attraction through the CCR5 receptor controls progress from insulitis to diabetes in non-obese diabetic mice. Eur J Immunol 34:548–557

    Article  CAS  PubMed  Google Scholar 

  40. Ejrnaes M, Videbaek N, Christen U, Cooke A, Michelsen BK, von Herrath M (2005) Different diabetogenic potential of autoaggressive CD8+ clones associated with IFN-gamma-inducible protein 10 (CXC chemokine ligand 10) production but not cytokine expression, cytolytic activity, or homing characteristics. J Immunol 174:2746–2755

    Article  CAS  PubMed  Google Scholar 

  41. Rhode A, Pauza ME, Barral AM, Rodrigo E, Oldstone MB, von Herrath MG, Christen U (2005) Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J Immunol 175:3516–3524

    Article  CAS  PubMed  Google Scholar 

  42. Campbell IL, Wong GH, Schrader JW, Harrison LC (1985) Interferon-gamma enhances the expression of the major histocompatibility class I antigens on mouse pancreatic beta cells. Diabetes 34:1205–1209

    Article  CAS  PubMed  Google Scholar 

  43. Pujol-Borrell R, Todd I, Doshi M, Bottazzo GF, Sutton R, Gray D et al (1987) HLA class II induction in human islet cells by interferon-gamma plus tumour necrosis factor or lymphotoxin. Nature 325:304–306

    Article  Google Scholar 

  44. Leiter EH, Christianson GJ, Serreze DV, Ting AT, Worthen SM (1989) MHC antigen induction by interferon gamma on cultured mouse pancreatic beta cells and macrophages. Genetic analysis of strain differences and discovery of an “occult” class I-like antigen in NOD/Lt mice. J Exp Med 170:1243–1262

    Article  CAS  PubMed  Google Scholar 

  45. Kay TW, Campbell IL, Oxbrow L, Harrison LC (1991) Overexpression of class I major histocompatibility complex accompanies insulitis in the non-obese diabetic mouse and is prevented by anti-interferon-g antibody. Diabetologia 34:779–785

    Article  CAS  PubMed  Google Scholar 

  46. Calderon B, Carrero JA, Miller MJ, Unanue ER (2011) Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans. Proc Natl Acad Sci U S A 108:1561–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pang S, Zhang L, Wang H, Yi Z, Li L, Gao L, Zhao J, Tisch R et al (2009) CD8(+) T cells specific for beta cells encounter their cognate antigens in the islets of NOD mice. Eur J Immunol 39:2716–2724

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Tsai S, Shameli A, Yamanouchi J, Alkemade G, Santamaria P (2010) In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation. Proc Natl Acad Sci U S A 107:9317–9322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Graham KL, Krishnamurthy B, Fynch S, Ayala-Perez R, Slattery RM, Santamaria P et al (2012) Intra-islet proliferation of cytotoxic T lymphocytes contributes to insulitis progression. Eur J Immunol 42:1717–1722

    Article  CAS  PubMed  Google Scholar 

  50. Sun SC, Chang JH, Jin J (2013) Regulation of nuclear factor-kB in autoimmunity. Trends Immunol 34:282–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Askenasy N (2015) Interferon and tumor necrosis factor as humoral mechanisms coupling hematopoietic activity to inflammation and injury. Blood Rev 29:11–15

    Article  CAS  PubMed  Google Scholar 

  52. Mandrup-Poulsen T (1996) The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 39:1005–1029

    Article  CAS  PubMed  Google Scholar 

  53. Hoorens A, Stange G, Pavlovic D, Pipeleers D (2001) Distinction between interleukin-1-induced necrosis and apoptosis of islet cells. Diabetes 50:551–557

    Article  CAS  PubMed  Google Scholar 

  54. Campbell IL, Iscaro A, Harrison LC (1988) IFN-gamma and tumor necrosis factor-alpha: cytotoxicity to murine islets of Langerhans. J Immunol 141:2325–2329

    CAS  PubMed  Google Scholar 

  55. von Herrath MG, Oldstone MBA (1997) IFN-γ is essential for β-cell destruction by CTL. J Exp Med 185:531–539

    Article  Google Scholar 

  56. Mueller C, Held W, Imboden MA, Carnaud C (1995) Accelerated β-cell destruction in adoptively transferred autoimmune diabetes correlates with an increased expression of the genes coding for TNF-a and granzyme A in the intra-islet infiltrates. Diabetes 44:112–117

    Article  CAS  PubMed  Google Scholar 

  57. Pakala SV, Chivetta M, Kelly CB, Katz JD (1999) In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha. J Exp Med 189:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaneto H, Fujii J, Seo HG, Suzuki K, Matsuoka T, Nakamura M, Tatsumi H, Yamasaki Y, Kamada T, Taniguchi N (1995) Apoptotic cell death triggered by nitric oxide in pancreatic beta-cells. Diabetes 44:733–738

    Article  CAS  PubMed  Google Scholar 

  59. Zumsteg U, Frigerio S, Hollander GA (2000) Nitric oxide production and Fas surface expression mediate two independent pathways of cytokine-induced murine beta-cell damage. Diabetes 49:39–47

    Article  CAS  PubMed  Google Scholar 

  60. Mandrup-Poulsen T, Bendtzen K, Dinarello CA, Nerup J (1987) Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic beta-cell cytotoxicity. J Immunol 139:4077–4082

    CAS  PubMed  Google Scholar 

  61. Pukel C, Baquerizo H, Rabinovitch A (1988) Destruction of rat islet cell monolayers by cytokines: synergistic interaction of interferon-g, tumor necrosis factor, lymphotoxin, and interleukin 1. Diabetes 37:133–136

    Article  CAS  PubMed  Google Scholar 

  62. Cetkovic-Cvrlje M, Eizirik DL (1994) TNF-alpha and IFN-gamma potentiate the deleterious effects of IL-1 beta on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 6:399–406

    Article  CAS  PubMed  Google Scholar 

  63. Sternesjö J, Bendtzen K, Sandler S (1995) Effects of prolonged exposure in vitro to interferon-gamma and tumour necrosis factor-alpha on nitric oxide and insulin production of rat pancreatic islets. Autoimmunity 20:185–190

    Article  PubMed  Google Scholar 

  64. Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226

    Article  CAS  PubMed  Google Scholar 

  65. Suk K, Kim S, Kim YH, Kim KA, Chang I, Yagita H et al (2001) IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: a key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death. J Immunol 166:4481–4489

    Article  CAS  PubMed  Google Scholar 

  66. Wachlin G, Augstein P, Schröder D, Kuttler B, Klöting I, Heinke P, Schmidt S (2003) IL-1beta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. J Autoimmun 20:303–312

    Article  CAS  PubMed  Google Scholar 

  67. Arnush M, Heitmeier MR, Scarim AL, Marino MH, Manning PT, Corbett JA (1998) IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest 102:516–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Darville MI, Eizirik DL (1998) Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 41:1101–1108

    Article  CAS  PubMed  Google Scholar 

  69. Thomas HE, Darwiche R, Corbett JA, Kay TW (2002) Interleukin-1 plus gamma-interferon-induced pancreatic beta-cell dysfunction is mediated by beta-cell nitric oxide production. Diabetes 51:311–316

    Article  CAS  PubMed  Google Scholar 

  70. Kwon G, Corbett JA, Rodi CP, Sullivan P, McDaniel ML (1995) Interleukin-1 beta-induced nitric oxide synthase expression by rat pancreatic beta-cells: evidence for the involvement of nuclear factor kappa B in the signaling mechanism. Endocrinology 136:4790–4795

    Article  CAS  PubMed  Google Scholar 

  71. Corbett JA, McDaniel ML (1995) Intraislet release of interleukin 1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide synthase. J Exp Med 181:559–568

    Article  CAS  PubMed  Google Scholar 

  72. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I et al (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci U S A 98:10845–10850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choi BM, Pae HO, Jang SI, Kim YM, Chung HT (2002) Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol 35:116–126

    CAS  PubMed  Google Scholar 

  74. O'Brien BA, Harmon BV, Cameron DP, Allan DJ (1997) Apoptosis is the mode of beta-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse. Diabetes 46:750–757

    Article  PubMed  Google Scholar 

  75. Varanasi V, Avanesyan L, Schumann DM, Chervonsky AV (2012) Cytotoxic mechanisms employed by mouse T cells to destroy pancreatic β-cells. Diabetes 61:2862–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mathis D, Vence L, Benoist C (2001) β-Cell death during progression to diabetes. Nature 414:792–798

    Article  CAS  PubMed  Google Scholar 

  77. Lee MS, Chang I, Kim S (2004) Death effectors of beta-cell apoptosis in type 1 diabetes. Mol Genet Metab 83:82–92

    Article  CAS  PubMed  Google Scholar 

  78. Pearl-Yafe M, Kaminitz A, Yolcu ES, Yaniv I, Stein J, Askenasy N (2007) Pancreatic islets under attack: cellular and molecular effectors. Curr Pharm Des 13:749–760

    Article  CAS  PubMed  Google Scholar 

  79. Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10:501–513

    Article  CAS  PubMed  Google Scholar 

  80. Kagi D, Odermatt B, Seiler P, Zinkernagel RM, Mak TW, Hengartner H (1997) Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 186:989–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kreuwel HT, Morgan DJ, Krahl T, Ko A, Sarvetnick N, Sherman LA (1999) Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin-dependent diabetes mellitus. J Immunol 163:4335–4341

    CAS  PubMed  Google Scholar 

  82. McKenzie MD, Dudek NL, Mariana L, Chong MM, Trapani JA, Kay TW, Thomas HE (2006) Perforin and Fas induced by IFNgamma and TNFalpha mediate beta cell death by OT-I CTL. Int Immunol 18:837–846

    Article  CAS  PubMed  Google Scholar 

  83. Itoh N, Imagawa A, Hanafusa T, Waguri M, Yamamoto K, Iwahashi H et al (1997) Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J Exp Med 186:613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Loweth AC, Williams GT, James RF, Scarpello JH, Morgan NG (1998) Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1beta and Fas ligation. Diabetes 47:727–732

    Article  CAS  PubMed  Google Scholar 

  85. Suarez-Pinzon W, Sorensen O, Bleackley RC, Elliott JF, Rajotte RV, Rabinovitch A (1999) Beta-cell destruction in NOD mice correlates with Fas (CD95) expression on beta-cells and proinflammatory cytokine expression in islets. Diabetes 48:21–28

    Article  CAS  PubMed  Google Scholar 

  86. Herrera PL, Harlan DM, Vassalli P (2000) A mouse CD8 T cell-mediated acute autoimmune diabetes independent of the perforin and Fas cytotoxic pathways: possible role of membrane TNF. Proc Natl Acad Sci U S A 97:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Walter U, Franzke A, Sarukhan A, Zober C, von Boehmer H, Buer J, Lechner O (2000) Monitoring gene expression of TNFR family members by beta-cells during development of autoimmune diabetes. Eur J Immunol 30:1224–1232

    Article  CAS  PubMed  Google Scholar 

  88. Kagi D, Ho A, Odermatt B, Zakarian A, Ohashi PS, Mak TW (2003) TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes. J Immunol 162:4598–4605

    Google Scholar 

  89. Amrani A, Verdaguer J, Thiessen S, Bou S, Santamaria P (2000) IL-1alpha, IL-1beta, and IFN-gamma mark beta cells for Fas-dependent destruction by diabetogenic CD4(+) T lymphocytes. J Clin Invest 105:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Angstetra E, Graham KL, Emmett S, Dudek NL, Darwiche R, Ayala-Perez R et al (2009) In vivo effects of cytokines on pancreatic beta-cells in models of type I diabetes dependent on CD4(+) T lymphocytes. Immunol Cell Biol 87:178–185

    Article  CAS  PubMed  Google Scholar 

  91. Yamada K, Takane-Gyotoku N, Yuan X, Ichikawa F, Inada C, Nonaka K (1996) Mouse islet cell lysis mediated by interleukin-1-induced Fas. Diabetologia 39:1306–1312

    Article  CAS  PubMed  Google Scholar 

  92. Stassi G, De Maria R, Trucco G, Rudert W, Testi R, Galluzzo A et al (1997) Nitric oxide primes pancreatic beta cells for Fas-mediated destruction in insulin-dependent diabetes mellitus. J Exp Med 186:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sekine N, Ishikawa T, Okazaki T, Hayashi M, Wollheim CB, Fujita T (2000) Synergistic activation of NF-kappab and inducible isoform of nitric oxide synthase induction by interferon-gamma and tumor necrosis factor-alpha in INS-1 cells. J Cell Physiol 184:46–57

    Article  CAS  PubMed  Google Scholar 

  94. Papaccio G, Graziano A, D'Aquino R, Valiante S, Naro F (2005) A biphasic role of nuclear transcription factor (NF)-kappaB in the islet beta-cell apoptosis induced by interleukin (IL)-1beta. J Cell Physiol 204:124–130

    Article  CAS  PubMed  Google Scholar 

  95. Zhao Y, Krishnamurthy B, Mollah ZU, Kay TW, Thomas HE (2011) NF-kB in type 1 diabetes. Inflamm Allergy Drug Targets 10:208–217

    Article  CAS  PubMed  Google Scholar 

  96. Chaudhary P, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kB pathway. Immunity 7:821–830

    Article  CAS  PubMed  Google Scholar 

  97. Ortis F, Pirot P, Naamane N, Kreins AY, Rasschaert J, Moore F et al (2008) Induction of nuclear factor-kappaB and its downstream genes by TNF-alpha and IL-1beta has a pro-apoptotic role in pancreatic beta cells. Diabetologia 51:1213–1225

    Article  CAS  PubMed  Google Scholar 

  98. Rauert H, Wicovsky A, Müller N, Siegmund D, Spindler V, Waschke J et al (2010) Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 285:7394–7404

    Article  CAS  PubMed  Google Scholar 

  99. Thomas HE, Angstetra E, Fernandes RV, Mariana L, Irawaty W, Jamieson EL et al (2006) Perturbations in nuclear factor-kappaB or c-Jun N-terminal kinase pathways in pancreatic beta cells confer susceptibility to cytokine-induced cell death. Immunol Cell Biol 84:20–27

    Article  CAS  PubMed  Google Scholar 

  100. Irawaty W, Kay TWH, Thomas HE (2002) Transmembrane TNF and IFN-γ induce caspase-independent death of primary mouse pancreatic beta cells. Autoimmunity 35:369–375

    Article  CAS  PubMed  Google Scholar 

  101. Sarvetnick N, Liggitt D, Pitts SL, Hansen SE, Stewart TA (1988) Insulin dependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-γ. Cell 52:773–782

    Article  CAS  PubMed  Google Scholar 

  102. Higuchi Y, Herrera P, Muniesa P, Huarte J, Belin D, Ohashi P et al (1992) Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med 176:1719–1731

    Article  CAS  PubMed  Google Scholar 

  103. Green EA, Eynon EE, Flavell RA (1998) Local expression of TNFa in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity 9:733–743

    Article  CAS  PubMed  Google Scholar 

  104. Dayer-Metroz MD, Wollheim CB, Seckinger P, Dayer JM (1989) A natural interleukin 1 (IL-1) inhibitor counteracts the inhibitory effect of IL-1 on insulin production in cultured rat pancreatic islets. J Autoimmun 2:163–171

    Article  CAS  PubMed  Google Scholar 

  105. Zumsteg U, Reimers JI, Pociot F, Morch L, Helqvist S, Brendel M et al (1993) Differential interleukin-1 receptor antagonism on pancreatic beta and alpha cells. Studies in rodent and human islets and in normal rats. Diabetologia 36:759–766

    Article  CAS  PubMed  Google Scholar 

  106. Debray-Sachs M, Carnaud C, Boitard C, Cohen H, Gresser I, Bedossa P, Bach JF (1991) Prevention of diabetes in NOD mice treated with antibody to murine IFN gamma. J Autoimmun 4:237–248

    Article  CAS  PubMed  Google Scholar 

  107. Wogensen L, Molony L, Gu D, Krahl T, Zhu S, Sarvetnick N (1994) Postnatal anti-interferon-gamma treatment prevents pancreatic inflammation in transgenic mice with beta-cell expression of interferon-gamma. J Interferon Res 14:111–116

    Article  CAS  PubMed  Google Scholar 

  108. Yang X, Tisch R, Singer SM, Cao ZA, Liblau LS, Schreiber RD, McDevitt HO (1994) Effect of tumor necrosis factor {alpha} on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process. J Exp Med 180:995–1004

    Article  CAS  PubMed  Google Scholar 

  109. Chee J, Angstetra E, Mariana L, Graham KL, Carrington EM, Bluethmann H et al (2011) TNF receptor 1 deficiency increases regulatory T cell function in nonobese diabetic mice. J Immunol 187:1702–1712

    Article  CAS  PubMed  Google Scholar 

  110. Koulmanda M, Bhasin M, Awdeh Z, Qipo A, Fan Z, Hanidziar D et al (2012) The role of TNF-α in mice with type 1- and 2- diabetes. PLoS One 7:e33254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jörns A, Ertekin UG, Arndt T, Terbish T, Wedekind D, Lenzen S (2015) TNF-α antibody therapy in combination with the T-cell-specific antibody anti-TCR reverses the diabetic metabolic state in the LEW.1AR1-iddm rat. Diabetes 64:2880–2891

    Article  PubMed  CAS  Google Scholar 

  112. Thomas HE, Irawaty W, Darwiche R, Brodnicki TC, Santamaria P, Allison J, Kay TW (2004) IL-1 receptor deficiency slows progression to diabetes in the NOD mouse. Diabetes 53:113–121

    Article  CAS  PubMed  Google Scholar 

  113. Hultgren B, Huang X, Dybdal N, Stewart TA (1996) Genetic absence of gamma-interferon delays but does not prevent diabetes in NOD mice. Diabetes 45:812–817

    Article  CAS  PubMed  Google Scholar 

  114. Rabinovitch A, Suarez-Pinzon WL (2007) Roles of cytokines in the pathogenesis and therapy of type 1 diabetes. Cell Biochem Biophys 48:159–163

    Article  CAS  PubMed  Google Scholar 

  115. Sia C, Hänninen A (2006) Apoptosis in autoimmune diabetes: the fate of beta-cells in the cleft between life and death. Rev Diabet Stud 3:39–46

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mandrup-Poulsen T, Pickersgill L, Donath MY (2010) Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol 6:158–166

    Article  CAS  PubMed  Google Scholar 

  117. Baumann B, Salem HH, Boehm BO (2012) Anti-inflammatory therapy in type 1 diabetes. Curr Diab Rep 12:499–509

    Article  CAS  PubMed  Google Scholar 

  118. Hamad AR, Arcara K, Uddin S, Donner T (2012) The potential of Fas ligand (apoptosis-inducing molecule) as an unconventional therapeutic target in type 1 diabetes. Front Immunol 3:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nepom GT, Ehlers M, Mandrup-Poulsen T (2013) Anti-cytokine therapies in T1D: concepts and strategies. Clin Immunol 149:279–285

    Article  CAS  PubMed  Google Scholar 

  120. Sumpter KM, Adhikari S, Grishman EK, White PC (2011) Preliminary studies related to anti-interleukin-1β therapy in children with newly diagnosed type 1 diabetes. Pediatr Diabetes 12:656–667

    Article  CAS  PubMed  Google Scholar 

  121. Moran A, Bundy B, Becker DJ, Dimeglio LA, Gitelman SE, Goland R, Type 1 Diabetes TrialNet Canakinumab Study Group et al (2013) nterleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381:1905–1915

    Article  CAS  PubMed  Google Scholar 

  122. Cabrera SM, Wang X, Chen YG, Jia S, Kaldunski ML, Greenbaum CJ, Type 1 Diabetes TrialNet Canakinumab Study Group et al (2016) Interleukin-1 antagonism moderates the inflammatory state associated with type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol 46:1030–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ridker PM, Howard CP, Walter V, Everett B, Libby P, Hensen J, CANTOS Pilot Investigative Group et al (2012) Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126:2739–2748

    Article  CAS  PubMed  Google Scholar 

  124. van Asseldonk EJ, van Poppel PC, Ballak DB, Stienstra R, Netea MG, Tack CJ (2015) One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus. Clin Immunol 160:155–162

    Article  PubMed  CAS  Google Scholar 

  125. Ryba M, Marek N, Hak L, Rybarczyk-Kapturska K, Myśliwiec M, Trzonkowski P, Myśliwska J (2011) Anti-TNF rescue CD4+ Foxp3+ regulatory T cells in patients with type 1 diabetes from effects mediated by TNF. Cytokine 55:353–361

    Article  CAS  PubMed  Google Scholar 

  126. Mastrandrea L, Yu J, Behrens T, Buchlis J, Albini C, Fourtner S, Quattrin T (2009) Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care 32:1244–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bloom BJ (2000) Development of diabetes mellitus during etanercept therapy in a child with systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum 43:2606–2608

    Article  CAS  PubMed  Google Scholar 

  128. Tack CJ, Kleijwegt FS, Van Riel PL, Roep BO (2009) Development of type 1 diabetes in a patient treated with anti-TNF-alpha therapy for active rheumatoid arthritis. Diabetologia 52:1442–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285

    Article  CAS  PubMed  Google Scholar 

  130. Wong AK, Kerkoutian S, Said J, Rashidi H, Pullarkat ST (2012) Risk of lymphoma in patients receiving antitumor necrosis factor therapy: a meta-analysis of published randomized controlled studies. Clin Rheumatol 31:631–636

    Article  PubMed  Google Scholar 

  131. Liu Y, Fan W, Chen H, Yu MX (2014) Risk of breast cancer and total malignancies in rheumatoid arthritis patients undergoing TNF-α antagonist therapy: a meta-analysis of randomized control trials. Asian Pac J Cancer Prev 15:3403–3410

    Article  PubMed  Google Scholar 

  132. Sahraoui A, Kloster-Jensen K, Ueland T, Korsgren O, Foss A, Scholz H (2014) Anakinra and tocilizumab enhance survival and function of human islets during culture: implications for clinical islet transplantation. Cell Transplant 23:1199–1211

    Article  PubMed  Google Scholar 

  133. Pozzilli P, Guglielmi C, Maggi D, Carlone A, Buzzetti R, Manfrini S (2011) Clinical update on the use of immuno modulators (antiCD3, GAD, Diapep277, anti-IL1) in type 1 diabetes. Curr Pharm Des 17:3224–3228

    Article  CAS  PubMed  Google Scholar 

  134. Waldron-Lynch F, Herold KC (2011) Immunomodulatory therapy to preserve pancreatic β-cell function in type 1 diabetes. Nat Rev Drug Discov 10:439–452

    Article  CAS  PubMed  Google Scholar 

  135. Ablamunits V, Henegariu O, Hansen JB, Opare-Addo L, Preston-Hurlburt P, Santamaria P, Mandrup-Poulsen T, Herold KC (2012) Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1 blockade. Diabetes 61:145–154

    Article  CAS  PubMed  Google Scholar 

  136. Bresson D, Togher L, Rodrigo E, Chen Y, Bluestone JA, Herold KC, von Herrath M (2006) Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest 116:1371–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wherrett DK, Bundy B, Becker DJ, Dimeglio LA, Gitelman SE, Goland R et al (2011) Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomized doubleblind trial. Lancet 378:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cantor J, Haskins K (2005) Effector function of diabetogenic CD4 Th1 T cell clones: a central role for TNF-alpha. J Immunol 175:7738–7745

    Article  CAS  PubMed  Google Scholar 

  139. He J, Haskins K (2008) Pathogenicity of T helper 2 T-cell clones from T-cell receptor transgenic non-obese diabetic mice is determined by tumour necrosis factor-alpha. Immunology 123:108–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu D, Pavlovic D, Chen MC, Flodstrom M, Sandler S, Eizirik DL (2000) Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS−/−). Diabetes 49:1116–1122

    Article  CAS  PubMed  Google Scholar 

  141. Amrani A, Verdaguer J, Anderson B, Utsugi T, Bou S, Santamaria P (1999) Perforin-independent beta-cell destruction by diabetogenic CD8(+) T lymphocytes in transgenic nonobese diabetic mice. J Clin Invest 103:1201–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Thomas HE, Darwiche R, Corbett JA, Kay TW (1999) Evidence that beta cell death in the nonobese diabetic mouse is Fas independent. J Immunol 163:1562–1569

    CAS  PubMed  Google Scholar 

  143. Apostolou I, Hao Z, Rajewsky K, von Boehmer H (2003) Effective destruction of Fas-deficient insulin-producing beta cells in type 1 diabetes. J Exp Med 198:1103–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Balasa B, Van Gunst K, Jung N, Balakrishna D, Santamaria P, Hanafusa T et al (2000) Islet-specific expression of IL-10 promotes diabetes in nonobese diabetic mice independent of Fas, perforin, TNF receptor-1, and TNF receptor-2 molecules. J Immunol 165:2841–2849

    Article  CAS  PubMed  Google Scholar 

  145. Serreze DV, Post CM, Chapman HD, Johnson EA, Lu B, Rothman PB (2000) Interferon-gamma receptor signaling is dispensable in the development of autoimmune type 1 diabetes in NOD mice. Diabetes 49:2007–2011

    Article  CAS  PubMed  Google Scholar 

  146. Kim S, Kim KA, Hwang DY, Lee TH, Kayagaki N, Yagita H, Lee MS (2000) Inhibition of autoimmune diabetes by Fas ligand: the paradox is solved. J Immunol 164:2931–2916

    Article  CAS  PubMed  Google Scholar 

  147. Vence L, Benoist C, Mathis D (2004) Fas deficiency prevents type 1 diabetes by inducing hyporesponsiveness in islet β-cell reactive T-cells. Diabetes 53:2797–2803

    Article  CAS  PubMed  Google Scholar 

  148. Askenasy N, Yolcu ES, Yaniv I, Shirwan H (2005) Induction of tolerance using Fas-ligand: a double-edged immunomodulator. Blood 105:1396–1404

    Article  CAS  PubMed  Google Scholar 

  149. Luo X, Yang H, Kim IS, Saint-Hilaire F, Thomas DA, De BP et al (2005) Systemic transforming growth factor-beta1 gene therapy induces Foxp3+ regulatory cells, restores self-tolerance, and facilitates regeneration of beta cell function in overtly diabetic nonobese diabetic mice. Transplantation 79:1091–1096

    Article  CAS  PubMed  Google Scholar 

  150. Chen C, Liu CP (2009) Regulatory function of a novel population of mouse autoantigen-specific Foxp3 regulatory T cells depends on IFN-gamma, NO, and contact with target cells. PLoS One 4:e7863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Thomas HE, Graham KL, Chee J, Thomas R, Kay TW, Krishnamurthy B (2013) Proinflammatory cytokines contribute to development and function of regulatory T cells in type 1 diabetes. Ann NY Acad Sci 1283:81–86

    Article  CAS  PubMed  Google Scholar 

  152. Formby B, Jacobs C, Dubuc P, Shao T (1992) Exogenous administration of IL-1 alpha inhibits active and adoptive transfer autoimmune diabetes in NOD mice. Autoimmunity 12:21–27

    Article  CAS  PubMed  Google Scholar 

  153. Jacob CO, Aiso S, Michie SA, Mcdevitt HO, Acha-Orbea H (1990) Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1. Proc Natl Acad Sci U S A 87:968–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Serreze DV, Hamaguchi K, Leiter EH (1989) Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmun 2:759–776

    Article  CAS  PubMed  Google Scholar 

  155. Campbell IL, Oxbrow L, Harrison LC (1991) Reduction in insulitis following administration of IFN-gamma and TNF-alpha in the NOD mouse. J Autoimmun 4:249–262

    Article  CAS  PubMed  Google Scholar 

  156. Qin HY, Chaturvedi P, Singh B (2004) In vivo apoptosis of diabetogenic T cells in NOD mice by IFN-gamma/TNF-alpha. Int Immunol 16:1723–1732

    Article  CAS  PubMed  Google Scholar 

  157. Moritani M, Yoshimoto K, Wong SF, Tanaka C, Yamaoka T, Sano T, Komagata Y, Miyazaki J, Kikutani H, Itakura M (1998) Abrogation of autoimmune diabetes in nonobese diabetic mice and protection against effector lymphocytes by transgenic paracrine TGF-beta1. J Clin Invest 102:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Grewal IS, Grewal KD, Wong FS, Wang H, Picarella DE, Janeway CA, Flavell RA (2002) Expression of transgene encoded TGF-beta in islets prevents autoimmune diabetes in NOD mice by a local mechanism. J Autoimmun 19:9–22

    Article  PubMed  Google Scholar 

  159. Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA (2003) CD4+ CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci U S A 100:10878–10883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wallberg M, Wong FS, Green EA (2011) An islet-specific pulse of TGF-beta abrogates CTL function and promotes beta cell survival independent of Foxp3+ T cells. J Immunol 186:2543–2551

    Article  CAS  PubMed  Google Scholar 

  161. Satoh J, Seino H, Shintani S, Tanaka S, Ohteki T, Masuda T, Nobunaga T, Toyota T (1990) Inhibition of type 1 diabetes in BB rats with recombinant human tumor necrosis factor-alpha. J Immunol 145:1395–1399

    CAS  PubMed  Google Scholar 

  162. Grewal IS, Grewal KD, Wong FS, Picarella DE, Janeway CA, Flavell RA (1996) Local expression of transgene encoded TNF alpha in islets prevents autoimmune diabetes in nonobese diabetic (NOD) mice by preventing the development of auto-reactive islet-specific T cells. J Exp Med 184:1963–1974

    Article  CAS  PubMed  Google Scholar 

  163. Hunger RE, Carnaud C, Garcia I, Vassalli P, Mueller C (1997) Prevention of autoimmune diabetes mellitus in NOD mice by transgenic expression of soluble tumor necrosis factor receptor p55. Eur J Immunol 27:255–2561

    Article  CAS  PubMed  Google Scholar 

  164. Christen U, Wolfe T, Möhrle U, Hughes AC, Rodrigo E, Green EA, Flavell RA, von Herrath MG (2001) A dual role for TNF-alpha in type 1 diabetes: islet-specific expression abrogates the ongoing autoimmune process when induced late but not early during pathogenesis. J Immunol 166:7023–7032

    Article  CAS  PubMed  Google Scholar 

  165. Christen U, Von Herrath MG (2002) Apoptosis of autoreactive CD8 lymphocytes as a potential mechanism for the abrogation of type 1 diabetes by islet-specific TNF-alpha expression at a time when the autoimmune process is already ongoing. Ann NY Acad Sci 958:166–169

    Article  CAS  PubMed  Google Scholar 

  166. Rane SG, Lee JH, Lin HM (2006) Transforming growth factor-beta pathway: role in pancreas development and pancreatic disease. Cytokine Growth Factor Rev 17:107–119

    Article  CAS  PubMed  Google Scholar 

  167. King C, Davies J, Mueller R, Lee MS, Krahl T, Yeung B et al (1998) TGF-beta1 alters APC preference, polarizing islet antigen responses toward a Th2 phenotype. Immunity 8:601–613

    Article  CAS  PubMed  Google Scholar 

  168. Cope AP, Liblau RS, Yang XD, Congia M, Laudanna C, Schreiber RD et al (1997) Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signaling. J Exp Med 185:1573–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jacob CO, Aiso S, Schreiber RD, Mcdevitt HO (1992) Monoclonal anti-tumor necrosis factor antibody renders non-obese diabetic mice hypersensitive to irradiation and enhances insulitis development. Int Immunol 4:611–614

    Article  CAS  PubMed  Google Scholar 

  170. Kumar P, Subramaniyam G (2015) Molecular underpinnings of Th17 immune-regulation and their implications in autoimmune diabetes. Cytokine 71:366–376

    Article  CAS  PubMed  Google Scholar 

  171. Walker LS, von Herrath M (2016) CD4 T cell differentiation in type 1 diabetes. Clin Exp Immunol 183:16–29

    Article  CAS  PubMed  Google Scholar 

  172. Li CR, Mueller EE, Bradley LM (2014) Islet antigen-specific Th17 cells can induce TNF-α-dependent autoimmune diabetes. J Immunol 192:1425–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C (2009) Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 39:216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M et al (1998) IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-α, by human macrophages. J Immunol 160:3513–3521

    CAS  PubMed  Google Scholar 

  175. Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J et al (2010) IL-17 immunity in human type 1 diabetes. J Immunol 185:1959–1967

    Article  CAS  PubMed  Google Scholar 

  176. Arif S, Moore F, Marks K, Bouckenooghe T, Dayan CM, Planas R et al (2011) Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated β-cell death. Diabetes 60:2112–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Emamaullee JA, Davis J, Merani S, Toso C, Elliott JF, Thiesen A, Shapiro AM (2009) Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 58:1302–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wan X, Guloglu FB, Vanmorlan AM, Rowland LM, Jain R, Haymaker CL et al (2012) Mechanisms underlying antigen-specific tolerance of stable and convertible Th17 cells during suppression of autoimmune diabetes. Diabetes 61:2054–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bellemore SM, Nikoopour E, Schwartz JA, Krougly O, Lee-Chan E, Singh B (2015) Preventative role of interleukin-17 producing regulatory T helper type 17 (Treg 17) cells in type 1 diabetes in non-obese diabetic mice. Clin Exp Immunol 182:261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nikoopour E, Schwartz JA, Huszarik K, Sandrock C, Krougly O, Lee-Chan E, Singh B (2010) Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes. J Immunol 184:4779–4788

    Article  CAS  PubMed  Google Scholar 

  181. Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A 108:11548–11553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yarkoni S, Kaminitz A, Sagiv Y, Yaniv I, Askenasy N (2008) Involvement of IL-2 in homeostasis of regulatory T cells: the IL-2 cycle. Bioessays 30:875–888

    Article  CAS  PubMed  Google Scholar 

  183. Almeida AR, Zaragoza B, Freitas AA (2006) Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+ CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. J Immunol 177:192–200

    Article  CAS  PubMed  Google Scholar 

  184. O'Gorman WE, Dooms H, Thorne SH, Kuswanto WF, Simonds EF, Krutzik PO, Nolan GP, Abbas AK (2009) The initial phase of an immune response functions to activate regulatory T cells. J Immunol 183:332–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S et al (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207:1871–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gregg RK, Jain R, Schoenleber SJ, Divekar R, Bell JJ, Lee HH et al (2004) A sudden decline in active membrane-bound TGF-beta impairs both T regulatory cell function and protection against autoimmune diabetes. J Immunol 173:7308–7316

    Article  CAS  PubMed  Google Scholar 

  188. Peng Y, Laouar Y, Li MO, Green EA, Flavell RA (2004) TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+ CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci U S A 101:4572–4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pop SM, Wong CP, Culton DA, Clarke SH, Tisch R (2005) Single cell analysis shows decreasing FoxP3 and TGFbeta1 coexpressing CD4+ CD25+ regulatory T cells during autoimmune diabetes. J Exp Med 201:1333–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wu AJ, Hua H, Munson SH, Mcdevitt HO (2002) Tumor necrosis factor-alpha regulation of CD4+ CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U S A 99:12287–12292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Housley WJ, Adams CO, Nichols FC, Puddington L, Lingenheld EG, Zhu L et al (2011) Natural but not inducible regulatory T cells require TNF-alpha signaling for in vivo function. J Immunol 186:6779–6787

    Article  CAS  PubMed  Google Scholar 

  192. Chen X, Bäumel M, Männel DN, Howard OM, Oppenheim JJ (2007) Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+ CD25+ T regulatory cells. J Immunol 179:154–161

    Article  CAS  PubMed  Google Scholar 

  193. Grinberg-Bleyer Y, Saadoun D, Baeyens A, Billiard F, Goldstein JD, Grégoire S et al (2010) Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J Clin Invest 120:4558–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4+ CD25hi T-regulatory cells. Blood 108:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nagar M, Jacob-Hirsch J, Vernitsky H, Berkun Y, Ben-Horin S, Amariglio N et al (2010) TNF activates a NF-kappaB-regulated cellular program in human CD45RA- regulatory T cells that modulates their suppressive function. J Immunol 184:3570–3581

    Article  CAS  PubMed  Google Scholar 

  196. van Mierlo GJ, Scherer HU, Hameetman M, Morgan ME, Flierman R, Huizinga TW, Toes RE (2008) Cutting edge: TNFR-shedding by CD4+ CD25+ regulatory T cells inhibits the induction of inflammatory mediators. J Immunol 180:2747–2751

    Article  PubMed  Google Scholar 

  197. Wang JL, Qian X, Chinookoswong N, Lu J, Chow G, Theill LE, Shi ZQ (2002) Polyethylene glycolated recombinant TNF receptor I improves insulitis and reduces incidence of spontaneous and cyclophosphamide-accelerated diabetes in nonobese diabetic mice. Endocrinology 143:3490–3497

    Article  CAS  PubMed  Google Scholar 

  198. Zhang Q, Cui F, Fang L, Hong J, Zheng B, Zhang JZ (2013) TNF-α impairs differentiation and function of TGF-β-induced Treg cells in autoimmune diseases through Akt and Smad3 signaling pathway. J Mol Cell Biol 5:85–98

    Article  CAS  PubMed  Google Scholar 

  199. Trembleau S, Penna G, Gregori S, Giarratana N, Adorini L (2003) IL-12 administration accelerates autoimmune diabetes in both wild-type and IFN-gamma-deficient nonobese diabetic mice, revealing pathogenic and protective effects of IL-12-induced IFN-gamma. J Immunol 170:5491–5501

    Article  CAS  PubMed  Google Scholar 

  200. Zhang J, Huang Z, Sun R, Tian Z, Wei H (2012) IFN-γ induced by IL-12 administration prevents diabetes by inhibiting pathogenic IL-17 production in NOD mice. J Autoimmun 38:20–28

    Article  PubMed  CAS  Google Scholar 

  201. Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ (2008) IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. Proc Natl Acad Sci U S A 105:14028–14033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sutherland AP, Van Belle T, Wurster AL, Suto A, Michaud M, Zhang D et al (2009) Interleukin-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 58:1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Vukkadapu SS, Belli JM, Ishii K, Jegga AG, Hutton JJ, Aronow BJ, Katz JD (2005) Dynamic interaction between T cell-mediated beta-cell damage and beta-cell repair in the run up to autoimmune diabetes of the NOD mouse. Physiol Genomics 21:201–211

    Article  CAS  PubMed  Google Scholar 

  204. Spinas GA, Mandrup-Poulsen T, Molvig J, Baek L, Bendtzen K, Dinarello CA, Nerup J (1986) Low concentrations of interleukin-1 stimulate and high concentrations inhibit insulin release from isolated rat islets of Langerhans. Acta Endocrinol (Copenh) 113:551–558

    CAS  Google Scholar 

  205. Maedler K, Schumann DM, Sauter N, Ellingsgaard H, Bosco D, Baertschiger R et al (2006) Low concentration of interleukin-1beta induces FLICE-inhibitory protein-mediated beta-cell proliferation in human pancreatic islets. Diabetes 55:2713–2722

    Article  CAS  PubMed  Google Scholar 

  206. Arous C, Ferreira PG, Dermitzakis ET, Halban PA (2015) Short term exposure of beta cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J Biol Chem 290:6653–6669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tuch BE, Simpson AM, Campbell IL (1991) Role of tumor necrosis factor-alpha and interferon-gamma as growth factors to the human fetal β-cell. J Clin Endocrinol Metabol 73:1044–1050

    Article  CAS  Google Scholar 

  208. Gu D, Molony L, Krahl T, Sarvetnick N (1995) Treatment of IFN-gamma transgenic mice with anti-IFN-gamma reveals the remodeling capacity of the adult pancreas. Diabetes 44:1161–1164

    Article  CAS  PubMed  Google Scholar 

  209. Yamaoka T, Yano M, Idehara C, Yamada T, Tomonari S, Moritani M et al (1999) Apoptosis and remodelling of beta cells by paracrine interferon-gamma without insulitis in transgenic mice. Diabetologia 42:566–573

    Article  CAS  PubMed  Google Scholar 

  210. Li M, Miyagawa J, Moriwaki M, Yuan M, Yang Q, Kozawa J et al (2003) Analysis of expression profiles of islet-associated transcription and growth factors during beta-cell neogenesis from duct cells in partially duct-ligated mice. Pancreas 27(2003):345–355

    Article  CAS  PubMed  Google Scholar 

  211. Xiao X, Wiersch J, El-Gohary Y, Guo P, Prasadan K, Paredes J et al (2013) TGFβ receptor signaling is essential for inflammation-induced but not β-cell workload-induced β-cell proliferation. Diabetes 62:1217–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lei C, Zhou X, Pang Y, Mao Y, Lu X, Li M, Zhang J (2015) TGF-β signalling prevents pancreatic beta cell death after proliferation. Cell Prolif 48:356–362

    Article  CAS  PubMed  Google Scholar 

  213. Gu D, Sarvetnick N (1993) Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development 118:33–46

    CAS  PubMed  Google Scholar 

  214. Haskins K, Kench J, Powers K, Bradley B, Pugazhenthi S, Reusch J, McDuffie M (2004) Role for oxidative stress in the regeneration of islet beta cells? J Investig Med 52:45–49

    Article  CAS  PubMed  Google Scholar 

  215. Noguchi A, Takada M, Nakayama K, Ishikawa T (2008) cGMP-independent anti-apoptotic effect of nitric oxide on thapsigargin-induced apoptosis in the pancreatic beta-cell line INS-1. Life Sci 83:865–870

    Article  CAS  PubMed  Google Scholar 

  216. Kim S, Millet I, Kim HS, Kim JY, Han MS, Lee MK et al (2007) NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice. Proc Natl Acad Sci U S A 104:1913–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sarkar SA, Kutlu B, Velmurugan K, Kizaka-Kondoh S, Lee CE, Wong R et al (2009) Cytokine-mediated induction of anti-apoptotic genes that are linked to nuclear factor kappa-B (NF-kappaB) signalling in human islets and in a mouse beta cell line. Diabetologia 52:1092–1101

    Article  CAS  PubMed  Google Scholar 

  218. Meier JJ, Ritzel RA, Maedler K, Gurlo T, Butler PC (2006) Increased vulnerability of newly forming beta cells to cytokine-induced cell death. Diabetologia 49:83–89

    Article  CAS  PubMed  Google Scholar 

  219. Mi QS, Ly D, Lamhamedi-Cherradi SE, Salojin KV, Zhou L, Grattan M et al (2003) Blockade of tumor necrosis factor-related apoptosis-inducing ligand exacerbates type 1 diabetes in NOD mice. Diabetes 52:1967–1975

    Article  CAS  PubMed  Google Scholar 

  220. Kodama S, Davis M, Faustman DL (2005) The therapeutic potential of tumor necrosis factor for autoimmune disease: a mechanistically based hypothesis. Cell Mol Life Sci 62:1850–1862

    Article  CAS  PubMed  Google Scholar 

  221. Ban L, Zhang J, Wang L, Kuhtreiber W, Burger D, Faustman DL (2008) Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc Natl Acad Sci U S A 105:13644–13649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Rabinovitch A (1994) Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes 43:613–621

    Article  CAS  PubMed  Google Scholar 

  223. Satoh J, Seino H, Abo T, Tanaka S, Shintani S, Ohta S et al (1989) Recombinant human tumor necrosis factor alpha suppresses autoimmune diabetes in nonobese diabetic mice. J Clin Invest 184:1345–1348

    Article  Google Scholar 

  224. Sobel DO, Han J, Williams J, Yoon JW, Jun HS, Ahvazi B (2002) Gamma interferon paradoxically inhibits the development of diabetes in the NOD mouse. J Autoimmun 19:129–137

    Article  PubMed  Google Scholar 

  225. Green EA, Flavell RA (2000) The temporal importance of TNFalpha expression in the development of diabetes. Immunity 12:459–469

    Article  CAS  PubMed  Google Scholar 

  226. Kodama K, Butte AJ, Creusot RJ, Su L, Sheng D, Hartnett M et al (2008) Tissue- and age-specific changes in gene expression during disease induction and progression in NOD mice. Clin Immunol 129:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chatzigeorgiou A, Harokopos V, Mylona-Karagianni C, Tsouvalas E, Aidinis V, Kamper EF (2010) The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Ann Med 42:426–438

    Article  CAS  PubMed  Google Scholar 

  228. Planas R, Carrillo J, Sanchez A, de Villa MC, Nuñez F, Verdaguer J et al (2010) Gene expression profiles for the human pancreas and purified islets in type 1 diabetes: new findings at clinical onset and in long-standing diabetes. Clin Exp Immunol 159:23–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Li CR, Mueller EE, Bradley LM (2015) Targeting CD44 augments the efficacy of Tregs in autoimmune diabetes. Immunol Lett 163:199–205

    Article  CAS  PubMed  Google Scholar 

  230. Shinomiya M, Fazle Akbar SM, Shinomiya H, Onji M (1999) Transfer of dendritic cells (DC) ex vivo stimulated with interferon-gamma (IFN-gamma) down-modulates autoimmune diabetes in non-obese diabetic (NOD) mice. Clin Exp Immunol 117:38–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Mori Y, Kodaka T, Kato T, Kanagawa EM, Kanagawa O (2009) Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development. Int Immunol 21:1291–1299

    Article  CAS  PubMed  Google Scholar 

  232. Jain R, Tartar DM, Gregg RK, Divekar RD, Bell JJ, Lee HH et al (2008) Innocuous IFNgamma induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J Exp Med 205:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Belghith M, Bluestone JA, Barriot S, Mégret J, Bach JF, Chatenoud L (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9:1202–1208

    Article  CAS  PubMed  Google Scholar 

  234. Serreze DV, Chapman HD, Post CM, Johnson EA, Suarez-Pinzon WL, Rabinovitch A (2001) Th1 to Th2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. J Immunol 166:1352–1359

    Article  CAS  PubMed  Google Scholar 

  235. Kodama S, Kühtreiber W, Fujimura S, Dale EA, Faustman DL (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302:1223–1227

    Article  CAS  PubMed  Google Scholar 

  236. Tian B, Hao J, Zhang Y, Tian L, Yi H, O'Brien TD et al (2009) Upregulating CD4+ CD25+ FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy. Transplantation 87:198–206

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Askenasy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

There is no funding source.

Ethical Approval

This article does not contain original data of any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminitz, A., Ash, S. & Askenasy, N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clinic Rev Allerg Immunol 52, 460–472 (2017). https://doi.org/10.1007/s12016-016-8587-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-016-8587-y

Keywords

Navigation