Skip to main content

Advertisement

Log in

The Eosinophil in Infection

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

First described by Paul Ehrlich in 1879, who noted its characteristic staining by acidophilic dyes, for many years, the eosinophil was considered to be an end-effector cell associated with helminth infections and a cause of tissue damage. Over the past 30 years, research has helped to elucidate the complexity of the eosinophil’s function and establish its role in host defense and immunity. Eosinophils express an array of ligand receptors which play a role in cell growth, adhesion, chemotaxis, degranulation, and cell-to-cell interactions. They play a role in activation of complement via both classical and alternative pathways. Eosinophils synthesize, store and secrete cytokines, chemokines, and growth factors. They can process antigen, stimulate T cells, and promote humoral responses by interacting with B cells. Eosinophils can function as antigen presenting cells and can regulate processes associated with both T1 and T2 immunity. Although long known to play a role in defense against helminth organisms, the interactions of eosinophils with these parasites are now recognized to be much more complex. In addition, their interaction with other pathogens continues to be investigated. In this paper, we review the eosinophil’s unique biology and structure, including its characteristic granules and the effects of its proteins, our developing understanding of its role in innate and adaptive immunity and importance in immunomodulation, and the part it plays in defense against parasitic, viral, fungal and bacterial infections. Rather than our worst enemy, the eosinophil may, in fact, be one of the most essential components in host defense and immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gleich GJ (2013) Historical overview and perspective on the role of the eosinophil in health and disease. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 1–11

    Chapter  Google Scholar 

  2. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg HF, Dyer KD, Domachowske JB (2009) Respiratory viruses and eosinophils: exploring the connections. Antivir Res 83(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38(5):709–750

    Article  CAS  PubMed  Google Scholar 

  6. Blanchard C, Rothenberg ME (2009) Biology of the eosinophil. Adv Immunol 101:81–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bystrom J, Amin K, Bishop-Bailey D (2011) Analysing the eosinophil cationic protein—a clue to the function of the eosinophil granulocyte. Respir Res 12:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wardlaw AJ (1994) Eosinophils in the 1990s: new perspectives on their role in health and disease. Postgrad Med J 70:536–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenberg HF, Domachowske JB (1999) Eosinophils, ribonucleases and host defense: solving the puzzle. Immunol Res 20(3):261–274

    Article  CAS  PubMed  Google Scholar 

  10. Spencer LA, Bonjour K, Melo RCN, Weller PF (2014) Eosinophil secretion of granule-derived cytokines. Front Immunol 5:496. doi:10.3389/fimmu.2014.00496

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giembycz MA, Lindsay MA (1999) Pharmacology of the eosinophil. Pharmacol Rev 51(2):213–339

    CAS  PubMed  Google Scholar 

  12. Gleich GJ, Loegering DA (1984) Immunobiology of eosinophils. Annu Rev Immunol 2:429–459

    Article  CAS  PubMed  Google Scholar 

  13. Kay AB (1974) The eosinophil in infectious diseases. J Infect Dis 129(5):606–613

    Article  CAS  PubMed  Google Scholar 

  14. Shamri R, Xenakis JJ, Spencer LA (2011) Eosinophils in innate immunity: an evolving story. Cell Tissue Res 343(1):57–83

    Article  PubMed  PubMed Central  Google Scholar 

  15. Melo RCN, Dvorak AM, Weller PF (2013) Eosinophil ultrastructure. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 20–30

    Google Scholar 

  16. Muniz VS, Weller PF, Neves JS (2012) Eosinophil crystalloid granules: structure, function and beyond. J Leukoc Biol 92(2):281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neves JS, Weller PF (2009) Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Curr Opin Immunol 21:694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weller PF (2013) Eosinophil structure and cell surface receptors. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 19–20

    Google Scholar 

  19. Lacy P, Moqbel R (2013) Signaling and degranulation. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 206–219

    Google Scholar 

  20. Rosenberg HF (2008) RNase a ribonucleases and host defense: an evolving story. J Leukoc Biol 83(5):1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosenberg HF, Domachowske JB (2001) Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 70(5):691–698

    CAS  PubMed  Google Scholar 

  22. Rosenberg HF (1998) The eosinophil ribonucleases. Cell Mol Life Sci 54:795–803

    Article  CAS  PubMed  Google Scholar 

  23. Rosenberg HF, Domachowske JB (2001) Eosinophil-derived neurotoxin. Methods Enzymol 341:273–286

    Article  CAS  PubMed  Google Scholar 

  24. Davoine F, Lacy P (2014) Eosinophil cytokines, chemokines and growth factors: emerging roles in immunity. Front Immunol 5:570. doi:10.3389/fimmu.2014.00570

    Article  PubMed  PubMed Central  Google Scholar 

  25. Driss V, Legrand F, Capron M (2013) Eosinophil receptor profile. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 30–38

    Google Scholar 

  26. Matthews AN, Friend DS, Zimmerman N et al (1998) Eotaxin is required for the baseline level of tissue eosinophils. Proc Natl Acad Sci U S A 95(11):6273–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu X, Zimmerman N (2013) Eosinophil chemotaxis. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 121–131

    Google Scholar 

  28. Koenderman L (2013) Priming: a critical step in the control of eosinophil activation. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 170–179

    Google Scholar 

  29. Dombrowicz D, Capron M (2001) Eosinophils, allergy and parasites. Curr Opin Immunol 13:716–720

    Article  CAS  PubMed  Google Scholar 

  30. Cook-Mills JM (2013) Eosinophil-endothelial cell interactions during inflammation. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 139–153

    Google Scholar 

  31. Yousefi S, Gold JA, Andina N et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953

    Article  CAS  PubMed  Google Scholar 

  32. Nizet V, Rothenberg ME (2008) Mitochondrial missile defense. Nat Med 14(9):910–912

    Article  CAS  PubMed  Google Scholar 

  33. Weiler JM, Edens RE, Bell CS, Gleich GJ (1995) Eosinophil granule cationic proteins regulate the classical pathway of complement. Immunol 84:213–219

    CAS  Google Scholar 

  34. Phipps S, Lam CE, Mahalingam S et al (2007) Eosinophils contribute to innate immunity and promote clearance of respiratory syncytial virus. Blood 110(5):1578–1586

    Article  CAS  PubMed  Google Scholar 

  35. Kvarnhammar AM, Cardell LO (2013) Eosinophil responses to pathogen-associated and damage-associated molecular patterns. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 219–227

    Google Scholar 

  36. Akuthota P, Wang HB, Spencer LA, Weller PF (2008) Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin Exp Allergy 38:1254–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabin EA, Pearce EJ (1995) Early IL-4 production by non-CD4+ cells at the site of antigen deposition predicts the development of a T helper 2 cell response to Schistosoma mansoni eggs. J Immunol 155:4844–4853

    CAS  PubMed  Google Scholar 

  38. Sabin EA, Kopf MA, Pearce EJ (1996) Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J Exp Med 184:1871–1878

    Article  CAS  PubMed  Google Scholar 

  39. Spencer LA, Weller PF (2010) Eosinophils and Th2 immunity: contemporary insights. Immunol Cell Biol 88:250–256

    Article  PubMed  PubMed Central  Google Scholar 

  40. Teplinsky A, Elishmereni M, Katz HR, Levi-Schaffer F (2013) Eosinophil-mast cell interactions. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 361–367

    Google Scholar 

  41. Nutman TB (2013) Immune responses in helminth infections. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 312–320

    Google Scholar 

  42. Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminths parasites. J Allergy Clin Immunol 113:30–37

    Article  CAS  PubMed  Google Scholar 

  43. Gentil K, Hoerauf A, Layland LE (2013) Eosinophil-mediated responses toward helminths. (2013). In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 303–312

    Google Scholar 

  44. Swartz JM, Dyer KD, Cheever AW et al (2006) Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108:2420–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jacobsen EA, Taranova AG, Lee NA, Lee JJ (2007) Eosinophils: singularly destructive effector cells or purveyors of immunoregulation? J Allergy Clin Immunol 119:1313–1320

    Article  CAS  PubMed  Google Scholar 

  46. Padigel UM, Lee JJ, Nolan TJ et al (2006) Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect Immun 74(6):3232–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gebreselassie NG, Appleton JA (2013) Eosinophils as facilitators of helminth infection. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 321–327

    Google Scholar 

  48. Fabre V, Beitling DP, Bliss SK et al (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182:1577–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang L, Gebreselassie NG, Garliardo LF et al (2014) Eosinophil-derived IL-10 supports chronic nematode infection. J Immunol 193:4178–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pearlman E, Hall LR (2000) Immune mechanisms in Onchocerca volvulus-mediated corneal disease (river blindness). Parasite Immunol 22:625–631

    Article  CAS  PubMed  Google Scholar 

  51. Simons JE, Rothenberg ME, Lawrence RA (2005) Eotaxin-1-regulated eosinophils have a critical role in innate immunity against experimental Brugia malayi infection. Eur J Immunol 35:189–197

    Article  CAS  PubMed  Google Scholar 

  52. Cadman ET, Lawrence RA (2010) Granulocytes: effector cells or immunomodulators in the immune response to helminth infections? Parasite Immunol 32:1–19

    Article  CAS  PubMed  Google Scholar 

  53. Archer GT, Hirsch JG (1963) Isolation of granules from eosinophil leucocytes and study of their enzyme content. J Exp Med 118:277–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rosenberg HF, Dyer KD, Domachowske JB (2009) Eosinophils and their interactions with respiratory virus pathogens. Immunol Res 43(1–3):128–137

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rosenberg HF, Dyer KD, Domachowske JB (2013) Interactions of eosinophils with respiratory virus pathogens. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 281–290

    Google Scholar 

  56. Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177(6):1458–1464

    Article  CAS  PubMed  Google Scholar 

  57. Percopo CM, Dyer KD, Ochkur SI et al (2014) Activated mouse eosinophils protect against lethal respiratory virus infection. Blood 123:743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davoine F, Cao M, Wu Y et al (2008) Virus-induced eosinophil mediator release requires antigen presenting and CD4+ T cells. J Allergy Clin Immunol 122:69–77

    Article  CAS  PubMed  Google Scholar 

  59. Martines RB, Ng DL, Greer PW et al (2015) Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J Pathol 235:153–174

    Article  CAS  PubMed  Google Scholar 

  60. Wyers M, Formenty P, Cherel Y et al (1999) Histopathological and immunohistochemical studies of lesions associated with Ebola virus in a naturally infected chimpanzee. J Infect Dis 179(Suppl 1):S54–S59

    Article  PubMed  Google Scholar 

  61. Kita H (2013) Antifungal immunity by eosinophils. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 291–299

    Google Scholar 

  62. Yoon J, Ponikau JU, Lawrence CB, Kita H (2008) Innate antifungal immunity of human eosinophils mediated by a beta 2 integrin, CD11b. J Immunol 181(4):2907–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Inoue Y, Matsuwaki Y, Shin S-H et al (2005) Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils. J Immunol 175:5439–5447

    Article  CAS  PubMed  Google Scholar 

  64. Garro AP, Chiapello LS, Baronetti JL, Masih DT (2010) Rat eosinophils stimulate the expansion of Cryptococcus neoformans-specific CD4+ and CD8+ T cells with a T-helper 1 profile. Immunology 132:174–187

    Article  PubMed  Google Scholar 

  65. Piehler D, Stenzel W, Grahnet A et al (2011) Eosinophils contribute to IL-4 production and shape the T-helper cytokine profile and inflammatory response in pulmonary Cryptococcosis. Am J Pathol 179:733–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weller PF, Goetzel EJ (1980) The human eosinophil: roles in host defense and tissue injury. Am J Pathol 100:791–820

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Simon H-U, Yousefi S (2013) Eosinophil-mediated antibacterial host defense. In: Lee JJ, Rosenberg HF (eds) Eosinophils in health and disease. Academic Press, Waltham, pp 279–281

    Google Scholar 

  68. Persson T, Andersson P, Bodelsson M et al (2001) Bactericidal activity of human eosinophilic granulocytes against Escherichia coli. Infect Immun 69:3591–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lehrer RI, Sklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties or eosinophil major basic protein and eosinophil cationic protein. J Immunol 142(12):4428–4434

    CAS  PubMed  Google Scholar 

  70. Torrent M, Navarro S, Moussaoui M et al (2008) Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and petidoglycans. Biochemistry 47:3544–3555

    Article  CAS  PubMed  Google Scholar 

  71. Von Kockritz-Blickwede M, Nizet V (2009) Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med 87(8):775–783

    Article  Google Scholar 

  72. Rook GAW (2008) Review series on helminthes, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology 126:3–11

    Article  Google Scholar 

  73. Versini M, Jeandel P-Y, Bashi T et al (2015) Unraveling the hygiene hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Med 13:81–96

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shepherd C, Navarro S, Wangchuk P et al (2015) Identifying the immunomodulatory components of helminthes. Parasite Immunol 37:293–303

    Article  CAS  PubMed  Google Scholar 

  75. Nutman TB (2015) Looking beyond the induction of Th2 responses to explain immunimodulation by helminths. Parasite Immunol 37:304–313

    Article  CAS  PubMed  Google Scholar 

  76. Loke P, Lim YA (2015) Helminths and the microbiota: parts of the hygiene hypothesis. Parasite Immunol 37:314–323

    Article  CAS  PubMed  Google Scholar 

  77. Weinstock JV, Elliott DE (2009) Helminths and the IBD hygiene hypothesis. Inflamm Bowel Dis 15:128–133

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Ravin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravin, K.A., Loy, M. The Eosinophil in Infection. Clinic Rev Allerg Immunol 50, 214–227 (2016). https://doi.org/10.1007/s12016-015-8525-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8525-4

Keywords

Navigation