Skip to main content
Log in

Transcriptome and in Vitro Differentiation Profile of Human Embryonic Stem Cell Derived NKX2.1-Positive Neural Progenitors

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The generation of inhibitory interneuron progenitors from human embryonic stem cells (ESCs) is of great interest due to their potential use in transplantation therapies designed to treat central nervous system disorders. The medial ganglionic eminence (MGE) is a transient embryonic structure in the ventral telencephalon that is a major source of cortical GABAergic inhibitory interneuron progenitors. These progenitors migrate tangentially to sites in the cortex and differentiate into a variety of interneuron subtypes, forming local synaptic connections with excitatory projection neurons to modulate activity of the cortical circuitry. The homeobox domain-containing transcription factor NKX2.1 is highly expressed in the MGE and pre-optic area of the ventral subpallium and is essential for specifying cortical interneuron fate. Using a combination of growth factor agonists and antagonists to specify ventral telencephalic fates, we previously optimized a protocol for the efficient generation of NKX2.1-positive MGE-like neural progenitors from human ESCs. To establish their identity, we now characterize the transcriptome of these MGE-like neural progenitors using RNA sequencing and demonstrate the capacity of these cells to differentiate into inhibitory interneurons in vitro using a neuron-astrocyte co-culture system. These data provide information on the potential origin of interneurons in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gelman, D., Griveau, A., Dehorter, N., Teissier, A., Varela, C., Pla, R., Pierani, A., & Marin, O. (2011). A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. The Journal of Neuroscience, 31(46), 16570–16580.

    Article  CAS  PubMed  Google Scholar 

  2. Wonders, C. P., & Anderson, S. A. (2006). The origin and specification of cortical interneurons. Nature Reviews. Neuroscience, 7(9), 687–696.

    Article  CAS  PubMed  Google Scholar 

  3. Fino, E., Packer, A. M., & Yuste, R. (2013). The logic of inhibitory connectivity in the neocortex. The Neuroscientist, 19(3), 228–237.

    Article  PubMed  Google Scholar 

  4. Lehmann, K., A. Steinecke and J. Bolz (2012). GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons. Neural Plast 2012: 892784.

  5. Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., Buzsaki, G., Cauli, B., Defelipe, J., Fairen, A., Feldmeyer, D., Fishell, G., Fregnac, Y., Freund, T. F., Gardner, D., Gardner, E. P., Goldberg, J. H., Helmstaedter, M., Hestrin, S., Karube, F., Kisvarday, Z. F., Lambolez, B., Lewis, D. A., Marin, O., Markram, H., Munoz, A., Packer, A., Petersen, C. C., Rockland, K. S., Rossier, J., Rudy, B., Somogyi, P., Staiger, J. F., Tamas, G., Thomson, A. M., Toledo-Rodriguez, M., Wang, Y., West, D. C., & Yuste, R. (2008). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews. Neuroscience, 9(7), 557–568.

    Article  CAS  PubMed  Google Scholar 

  6. Cauli, B., Audinat, E., Lambolez, B., Angulo, M. C., Ropert, N., Tsuzuki, K., Hestrin, S., & Rossier, J. (1997). Molecular and physiological diversity of cortical nonpyramidal cells. The Journal of Neuroscience, 17(10), 3894–3906.

    CAS  PubMed  Google Scholar 

  7. Batista-Brito, R., & Fishell, G. (2009). The developmental integration of cortical interneurons into a functional network. Current Topics in Developmental Biology, 87, 81–118.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rubin, A. N., Alfonsi, F., Humphreys, M. P., Choi, C. K., Rocha, S. F., & Kessaris, N. (2010). The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex. The Journal of Neuroscience, 30(36), 12050–12062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Inan, M., Welagen, J., & Anderson, S. A. (2012). Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cerebral Cortex, 22(4), 820–827.

    Article  PubMed  Google Scholar 

  10. Taniguchi, H., Lu, J., & Huang, Z. J. (2013). The spatial and temporal origin of chandelier cells in mouse neocortex. Science, 339(6115), 70–74.

    Article  CAS  PubMed  Google Scholar 

  11. Hollemann, T., & Pieler, T. (2000). Xnkx-2.1: a homeobox gene expressed during early forebrain, lung and thyroid development in Xenopus laevis. Development Genes and Evolution, 210(11), 579–581.

    Article  CAS  PubMed  Google Scholar 

  12. Lazzaro, D., Price, M., de Felice, M., & Di Lauro, R. (1991). The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development, 113(4), 1093–1104.

    CAS  PubMed  Google Scholar 

  13. Sussel, L., Marin, O., Kimura, S., & Rubenstein, J. L. (1999). Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development, 126(15), 3359–3370.

    CAS  PubMed  Google Scholar 

  14. Anderson, S. A., Marin, O., Horn, C., Jennings, K., & Rubenstein, J. L. (2001). Distinct cortical migrations from the medial and lateral ganglionic eminences. Development, 128(3), 353–363.

    CAS  PubMed  Google Scholar 

  15. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J. L., & Anderson, S. A. (2004). Origins of cortical interneuron subtypes. The Journal of Neuroscience, 24(11), 2612–2622.

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Q., Wonders, C. P., & Anderson, S. A. (2005). Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development, 132(22), 4987–4998.

    Article  CAS  PubMed  Google Scholar 

  17. Butt, S. J., Sousa, V. H., Fuccillo, M. V., Hjerling-Leffler, J., Miyoshi, G., Kimura, S., & Fishell, G. (2008). The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron, 59(5), 722–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Du, T., Xu, Q., Ocbina, P. J., & Anderson, S. A. (2008). NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development, 135(8), 1559–1567.

    Article  CAS  PubMed  Google Scholar 

  19. Ohkubo, Y., Chiang, C., & Rubenstein, J. L. (2002). Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience, 111(1), 1–17.

    Article  CAS  PubMed  Google Scholar 

  20. de Lanerolle, N. C., Kim, J. H., Robbins, R. J., & Spencer, D. D. (1989). Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Research, 495(2), 387–395.

    Article  PubMed  Google Scholar 

  21. Wieser, H. G. (2004). ILAE commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia, 45(6), 695–714.

    Article  PubMed  Google Scholar 

  22. Cunningham, M., Cho, J. H., Leung, A., Savvidis, G., Ahn, S., Moon, M., Lee, P. K., Han, J. J., Azimi, N., Kim, K. S., Bolshakov, V. Y., & Chung, S. (2014). hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell, 15(5), 559–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Germain, N. D., Banda, E. C., Becker, S., Naegele, J. R., & Grabel, L. B. (2013). Derivation and isolation of NKX2.1-positive basal forebrain progenitors from human embryonic stem cells. Stem Cells and Development, 22(10), 1477–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, T. G., Yao, R., Monnell, T., Cho, J. H., Vasudevan, A., Koh, A., Peeyush, K. T., Moon, M., Datta, D., Bolshakov, V. Y., Kim, K. S., & Chung, S. (2014). Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation. Stem Cells, 32(7), 1789–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maroof, A. M., Keros, S., Tyson, J. A., Ying, S. W., Ganat, Y. M., Merkle, F. T., Liu, B., Goulburn, A., Stanley, E. G., Elefanty, A. G., Widmer, H. R., Eggan, K., Goldstein, P. A., Anderson, S. A., & Studer, L. (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell, 12(5), 559–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nicholas, C. R., Chen, J., Tang, Y., Southwell, D. G., Chalmers, N., Vogt, D., Arnold, C. M., Chen, Y. J., Stanley, E. G., Elefanty, A. G., Sasai, Y., Alvarez-Buylla, A., Rubenstein, J. L., & Kriegstein, A. R. (2013). Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell, 12(5), 573–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petros, T. J., Maurer, C. W., & Anderson, S. A. (2013). Enhanced derivation of mouse ESC-derived cortical interneurons by expression of Nkx2.1. Stem Cell Research, 11(1), 647–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tyson, J. A., Goldberg, E. M., Maroof, A. M., Xu, Q., Petros, T. J., & Anderson, S. A. (2015). Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development, 142(7), 1267–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., Watanabe, Y., Mizuseki, K., & Sasai, Y. (2005). Directed differentiation of telencephalic precursors from embryonic stem cells. Nature Neuroscience, 8(3), 288–296.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Weick, J. P., Liu, H., Krencik, R., Zhang, X., Ma, L., Zhou, G. M., Ayala, M., & Zhang, S. C. (2013). Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nature Biotechnology, 31(5), 440–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goulburn, A. L., Alden, D., Davis, R. P., Micallef, S. J., Ng, E. S., Yu, Q. C., Lim, S. M., Soh, C. L., Elliott, D. A., Hatzistavrou, T., Bourke, J., Watmuff, B., Lang, R. J., Haynes, J. M., Pouton, C. W., Giudice, A., Trounson, A. O., Anderson, S. A., Stanley, E. G., & Elefanty, A. G. (2011). A targeted NKX2.1 human embryonic stem cell reporter line enables identification of human basal forebrain derivatives. Stem Cells, 29(3), 462–473.

    Article  CAS  PubMed  Google Scholar 

  32. Banda, E., McKinsey, A., Germain, N., Carter, J., Anderson, N. C., & Grabel, L. (2015). Cell polarity and neurogenesis in embryonic stem cell-derived neural rosettes. Stem Cells and Development, 24(8), 1022–1033.

    Article  CAS  PubMed  Google Scholar 

  33. Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., & Pachter, L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 31(1), 46–53.

    Article  CAS  PubMed  Google Scholar 

  34. Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trapnell, C., & Schatz, M. C. (2009). Optimizing data intensive GPGPU computations for DNA sequence alignment. Parallel Computing, 35(8), 429–440.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xuan, S., Baptista, C. A., Balas, G., Tao, W., Soares, V. C., & Lai, E. (1995). Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron, 14(6), 1141–1115.

    Article  CAS  PubMed  Google Scholar 

  38. Tyson, J. A., & Anderson, S. A. (2013). The protracted maturation of human ESC-derived interneurons. Cell Cycle, 12(19), 3129–3130.

  39. Alifragis, P., Liapi, A., & Parnavelas, J. G. (2004). Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. The Journal of Neuroscience, 24(24), 5643–5648.

    Article  CAS  PubMed  Google Scholar 

  40. Cobos, I., Borello, U., & Rubenstein, J. L. (2007). Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron, 54(6), 873–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quinones, H. I., Savage, T. K., Battiste, J., & Johnson, J. E. (2010). Neurogenin 1 (Neurog1) expression in the ventral neural tube is mediated by a distinct enhancer and preferentially marks ventral interneuron lineages. Developmental Biology, 340(2), 283–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mo, Z., & Zecevic, N. (2008). Is Pax6 critical for neurogenesis in the human fetal brain? Cerebral Cortex, 18(6), 1455–1465.

    Article  PubMed  Google Scholar 

  43. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009a). Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc, 4(1), 44–57.

    Article  CAS  Google Scholar 

  44. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009b). Bioinformatics enrichment tools: paths towards the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1–13.

    Article  CAS  Google Scholar 

  45. Supek, F., Bosnjak, M., Skunca, N., & Smuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PloS One, 6(7), e21800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bain, G., Kitchens, D., Yao, M., Huettner, J. E., & Gottlieb, D. I. (1995). Embryonic stem cells express neuronal properties in vitro. Developmental Biology, 168(2), 342–357.

    Article  CAS  PubMed  Google Scholar 

  47. Strubing, C., Ahnert-Hilger, G., Shan, J., Wiedenmann, B., Hescheler, J., & Wobus, A. M. (1995). Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mechanisms of Development, 53(2), 275–287.

    Article  CAS  PubMed  Google Scholar 

  48. Banker, G. A. (1980). Trophic interactions between astroglial cells and hippocampal neurons in culture. Science, 209(4458), 809–810.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson, M. A., Weick, J. P., Pearce, R. A., & Zhang, S. C. (2007). Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. The Journal of Neuroscience, 27(12), 3069–3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang, X., Zhou, L., Wagner, A. M., Marchetto, M. C., Muotri, A. R., Gage, F. H., & Chen, G. (2013). Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Research, 11(2), 743–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hansen, D. V., Lui, J. H., Flandin, P., Yoshikawa, K., Rubenstein, J. L., Alvarez-Buylla, A., & Kriegstein, A. R. (2013). Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nature Neuroscience, 16(11), 1576–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma, T., Wang, C., Wang, L., Zhou, X., Tian, M., Zhang, Q., Zhang, Y., Li, J., Liu, Z., Cai, Y., Liu, F., You, Y., Chen, C., Campbell, K., Song, H., Ma, L., Rubenstein, J. L., & Yang, Z. (2013). Subcortical origins of human and monkey neocortical interneurons. Nature Neuroscience, 16(11), 1588–1597.

    Article  CAS  PubMed  Google Scholar 

  53. Miyoshi, G., Hjerling-Leffler, J., Karayannis, T., Sousa, V. H., Butt, S. J., Battiste, J., Johnson, J. E., Machold, R. P., & Fishell, G. (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. The Journal of Neuroscience, 30(5), 1582–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robbins, R. J., Brines, M. L., Kim, J. H., Adrian, T., de Lanerolle, N., Welsh, S., & Spencer, D. D. (1991). A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy. Annals of Neurology, 29(3), 325–332.

    Article  CAS  PubMed  Google Scholar 

  55. Swartz, B. E., Houser, C. R., Tomiyasu, U., Walsh, G. O., DeSalles, A., Rich, J. R., & Delgado-Escueta, A. (2006). Hippocampal cell loss in posttraumatic human epilepsy. Epilepsia, 47(8), 1373–1382.

    Article  PubMed  Google Scholar 

  56. Anderson, S. A., J. D. Classey, F. Conde, J. S. Lund and D. A. Lewis (1995). “Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex.” Neuroscience 67(1): 7–22.

  57. Fuchs, E. C., Zivkovic, A. R., Cunningham, M. O., Middleton, S., Lebeau, F. E., Bannerman, D. M., Rozov, A., Whittington, M. A., Traub, R. D., Rawlins, J. N., & Monyer, H. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron, 53(4), 591–604.

    Article  CAS  PubMed  Google Scholar 

  58. Schicht, M., Rausch, F., Finotto, S., Mathews, M., Mattil, A., Schubert, M., Koch, B., Traxdorf, M., Bohr, C., Worlitzsch, D., Brandt, W., Garreis, F., Sel, S., Paulsen, F., & Brauer, L. (2014). SFTA3, a novel protein of the lung: three-dimensional structure, characterisation and immune activation. The European Respiratory Journal, 44(2), 447–456.

    Article  CAS  PubMed  Google Scholar 

  59. Visel, A., J. L. R. Rubenstein, Y. J. Chen, L. A. Pennacchio, D. Vogt, C. Nicholas and A. Kriegstein (2013). Brain-specific enhancers for cell-based therapy, Google Patents.

Download references

Acknowledgments

The authors would like to thank Dr. Andrew Elefanty for his generous gift of providing the hES3 NKX2.1:GFP hESCs. They also thank Dr. Evan Jellison at the University of Connecticut Health Flow Cytometry Center for his assistance with FACS. This work was funded by grant 13-SCC-WES-01 from the Connecticut Regenerative Medicine Research Fund to L. Grabel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Y. Chen.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Electronic supplementary material

Supplementary Figure 1

Log2 transformed FPKM values for FACS isolated NKX2.1:GFP+ and NKX2.1:GFP- day 21 and 30 samples from both sequencing rounds. Values shown are ± SE. (JPEG 1591 kb)

Supplementary Figure 2

In vitro maturation of hESNPs. A) FPKM values of day 21 and 30 NKX2.1:GFP-positive cell populations from sequencing round 2 (green and red bars, respectively). Asterisk signifies statistical significance (P < 0.05) in calculated gene expression. B) Immunocytochemistry of NKX2.1:GFP, MAP2 and CB expression in day 21 and 30 FACS isolated GFP-positive cells. Day 21 and 30 scale bar =20 μm. C) Day 21 and 30 quantification analysis indicates higher percentage of the cell population expressing mature neuronal subtype markers at day 30. (JPEG 3111 kb)

Supplementary Figure 3

Heatmap and hierarchical clustering of the top A) 500 and B) 1000 genes with the largest gene expression fold change from day 21 and 30 hESNP differentiation experiments. Genes associated with selected Gene Ontologies are indicated (black). Gene expression represented as log2-transformed FPKM fold change values (NKX2–1+ / NKX2–1-). (JPEG 910 kb)

Supplementary Figure 4

Statistically significant changes in gene expression from two independent hESNP differentiation experiments are strongly correlated. Log2-transformed fold change FPKM values (NKX2–1+ / NKX2–1-) are shown for gene expression changes identified as statistically significant in one (grey points; Spearman =0.63) or both experiments (black circles; Spearman =0.81). In each quadrant, the number of gene expression changes is indicated for changes that were greater than 2-fold changed and statistically significant in one (grey) or both (black). Red lines (solid, dashed, and dotted) indicate 2, 4, and 8 fold changes. (JPEG 1545 kb)

Supplementary Table 1

(JPEG 1030 kb)

Supplementary Table 2

(JPEG 751 kb)

Supplementary Table 3

(JPEG 710 kb)

Supplementary Table 4

(JPEG 2159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C.Y., Plocik, A., Anderson, N.C. et al. Transcriptome and in Vitro Differentiation Profile of Human Embryonic Stem Cell Derived NKX2.1-Positive Neural Progenitors. Stem Cell Rev and Rep 12, 744–756 (2016). https://doi.org/10.1007/s12015-016-9676-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9676-2

Keywords

Navigation