Skip to main content
Log in

Rotary Suspension Culture Enhances Mesendoderm Differentiation of Embryonic Stem Cells Through Modulation of Wnt/β-catenin Pathway

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Recently, physical factors in the local cellular microenvironment have been confirmed with strong influences on regulating stem cell fate. Despite the recent identification of the rotary cell culture system (RCCS) as a bioreactor for culturing stem cells, the underlying biological role provided by RCCS in the lineage differentiation of embryonic stem cells (ESCs) remains largely undefined. Here, we explored the embryoid body (EB) formation and subsequent differentiation of mouse ESCs in RCCS. We demonstrated that EBs formed in RCCS were more homogeneous and bigger in size compared with those in the static condition. Further, we determined that mesendoderm differentiation was prominently enhanced, while neuroectodermal differentiation was significantly suppressed in RCCS. Surprisingly, we found that Wnt/β-catenin signaling was greatly enhanced mainly due to the increased expression of Wnt3 during ESC differentiation in RCCS. Inhibition of Wnt/β-catenin signaling by DKK1 decreased the expression of Brachyury and attenuated mesendoderm differentiation in RCCS. Intriguingly, Wnt3a markedly increased Brachyury expression under static condition rather than in RCCS. Taken together, our findings uncover a new role of rotary suspension culture in initializing the early differentiation of ESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adamo, L., & Garcia-Cardena, G. (2011). Directed stem cell differentiation by fluid mechanical forces. Antioxidants and Redox Signaling, 15(5), 1463–1473.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Aramaki, S., Hayashi, K., Kurimoto, K., et al. (2013). A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Developmental Cell, 27(5), 516–529.

    Article  CAS  PubMed  Google Scholar 

  3. Arnold, S. J., Stappert, J., Bauer, A., et al. (2000). Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mechanisms of Development, 91(1–2), 249–258.

    Article  CAS  PubMed  Google Scholar 

  4. Bakre, M. M., Hoi, A., Mong, J. C., et al. (2007). Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. Journal of Biological Chemistry, 282(43), 31703–31712.

    Article  CAS  PubMed  Google Scholar 

  5. Beloussov, L. V., & Grabovsky, V. I. (2006). Morphomechanics: goals, basic experiments and models. International Journal of Developmental Biology, 50(2–3), 81–92.

    PubMed  Google Scholar 

  6. Bottcher, R. T., & Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate development. Endocrine Reviews, 26(1), 63–77.

    Article  PubMed  Google Scholar 

  7. Carpenedo, R. L., Sargent, C. Y., & McDevitt, T. C. (2007). Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells, 25(9), 2224–2234.

    Article  PubMed  Google Scholar 

  8. Chen, S. S., Fitzgerald, W., Zimmerberg, J., et al. (2007). Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells, 25(3), 553–561.

    Article  CAS  PubMed  Google Scholar 

  9. Chowdhury, F., Li, Y., Poh, Y. C., et al. (2010). Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PloS One, 5(12), e15655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chowdhury, F., Na, S., Li, D., et al. (2010). Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Materials, 9(1), 82–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Daley, G. Q., & Scadden, D. T. (2008). Prospects for stem cell-based therapy. Cell, 132(4), 544–548.

    Article  CAS  PubMed  Google Scholar 

  12. Dreesen, O., & Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Reviews, 3(1), 7–17.

    Article  CAS  PubMed  Google Scholar 

  13. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    Article  CAS  PubMed  Google Scholar 

  14. Fei, T., Zhu, S., Xia, K., et al. (2010). Smad2 mediates Activin/Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells. Cell Research, 20(12), 1306–1318.

    Article  CAS  PubMed  Google Scholar 

  15. Hart, A. H., Hartley, L., Sourris, K., et al. (2002). Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development, 129(15), 3597–3608.

    CAS  PubMed  Google Scholar 

  16. Herrmann, B. G., & Kispert, A. (1994). The T genes in embryogenesis. Trends in Genetics, 10(8), 280–286.

    Article  CAS  PubMed  Google Scholar 

  17. Hwang, Y. S., Cho, J., Tay, F., et al. (2009). The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials, 30(4), 499–507.

    Article  CAS  PubMed  Google Scholar 

  18. Hwang, Y. S., Chung, B. G., Ortmann, D., et al. (2009). Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proceedings of the National Academy of Sciences of the United States of America, 106(40), 16978–16983.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Ingber, D. E. (2006). Mechanical control of tissue morphogenesis during embryological development. International Journal of Developmental Biology, 50(2–3), 255–266.

    PubMed  Google Scholar 

  20. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, 6(2), 88–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Jho, E. H., Zhang, T., Domon, C., et al. (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and Cellular Biology, 22(4), 1172–1183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Keller, R., Davidson, L. A., & Shook, D. R. (2003). How we are shaped: the biomechanics of gastrulation. Differentiation, 71(3), 171–205.

    Article  PubMed  Google Scholar 

  23. Kimelman, D. (2006). Mesoderm induction: from caps to chips. Nature Reviews Genetics, 7(5), 360–372.

    Article  CAS  PubMed  Google Scholar 

  24. Kita-Matsuo, H., Barcova, M., Prigozhina, N., et al. (2009). Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PloS One, 4(4), e5046.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lei, X. H., Ning, L. N., Cao, Y. J., et al. (2011). NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PloS One, 6(11), e26603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Li, S., Ma, Z., Niu, Z., et al. (2009). NASA-approved rotary bioreactor enhances proliferation and osteogenesis of human periodontal ligament stem cells. Stem Cells and Development, 18(9), 1273–1282.

    Article  CAS  PubMed  Google Scholar 

  27. Li, D., Zhou, J., Chowdhury, F., et al. (2011). Role of mechanical factors in fate decisions of stem cells. Regenerative Medicine, 6(2), 229–240.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lin, H. J., O’Shaughnessy, T. J., Kelly, J., & Ma, W. (2004). Neural stem cell differentiation in a cell-collagen-bioreactor culture system. Brain Research Developmental Brain Research, 153(2), 163–173.

    CAS  PubMed  Google Scholar 

  29. Liu, P., Wakamiya, M., Shea, M. J., et al. (1999). Requirement for Wnt3 in vertebrate axis formation. Nature Genetics, 22(4), 361–365.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, J., Tan, Y. H., Zhang, H. F., et al. (2012). Soft fibrin gels promote selection and growth of tumorigenic cells. Nature Materials, 11(8), 734–741.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lü, D. Y., Luo, C. H., Zhang, C., et al. (2014). Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials, 35(13), 3945–3955.

    Article  PubMed  Google Scholar 

  32. Marsano, A., Wendt, D., Raiteri, R., et al. (2006). Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials, 27(35), 5927–5934.

    Article  CAS  PubMed  Google Scholar 

  33. McGuckin, C., Forraz, N., Baradez, M. O., et al. (2006). Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiologiae Experimentalis (Wars), 66(4), 321–329.

    Google Scholar 

  34. Naito, A. T., Shiojima, I., Akazawa, H., et al. (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 103(52), 19812–19817.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ng, E. S., Davis, R. P., Azzola, L., et al. (2005). Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood, 106(5), 1601–1603.

    Article  CAS  PubMed  Google Scholar 

  36. Shi, C., Li, Q., Zhao, Y., et al. (2011). Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials, 32(10), 2508–2515.

    Article  CAS  PubMed  Google Scholar 

  37. Ten, B. D., Koole, W., Fuerer, C., et al. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell, 3(5), 508–518.

    Article  Google Scholar 

  38. Tran, T. H., Wang, X., Browne, C., et al. (2009). Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells, 27(8), 1869–1878.

    Article  CAS  PubMed  Google Scholar 

  39. Vallier, L., Alexander, M., & Pedersen, R. A. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of Cell Science, 118(Pt19), 4495–4509.

    Article  CAS  PubMed  Google Scholar 

  40. Walker, E., Ohishi, M., Davey, R. E., et al. (2007). Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment. Cell Stem Cell, 1(1), 71–86.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, J., & Wynshaw-Boris, A. (2004). The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation. Current Opinion in Genetics and Development, 14(5), 533–539.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Y., Zhang, Y., Zhang, S., et al. (2012). Rotating microgravity-bioreactor cultivation enhances the hepatic differentiation of mouse embryonic stem cells on biodegradable polymer scaffolds. Tissue Engineering. Part A, 18(21–22), 2376–2385.

    Article  CAS  PubMed  Google Scholar 

  43. Wobus, A. M., & Boheler, K. R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiological Reviews, 85(2), 635–678.

    Article  CAS  PubMed  Google Scholar 

  44. Woll, P. S., Morris, J. K., Painschab, M. S., et al. (2008). Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood, 111(1), 122–131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Yamaguchi, T. P. (2001). Heads or tails: Wnts and anterior-posterior patterning. Current Biology, 11(17), R713–R724.

    Article  CAS  PubMed  Google Scholar 

  46. Yamaguchi, T. P., Takada, S., Yoshikawa, Y., et al. (1999). T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes and Development, 13(24), 3185–3190.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115(3), 281–292.

    Article  CAS  PubMed  Google Scholar 

  48. Yook, J. I., Li, X. Y., Ota, I., et al. (2005). Wnt-dependent regulation of the E-cadherin repressor snail. Journal of Biological Chemistry, 280(12), 11740–11748.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Miss Qiao Jingqiao (Institute of Zoology, CAS) for tissue section and staining with hematoxylin and eosin. We thank Dr. Zhao Tongbiao (Institute of Zoology, CAS) for the J1 cell line and Dr. Mark Mercola for the T/Brachyury-eGFP Rex Neo plasmid. This work was supported by grants from the National Basic Research Program of China (2011CB710905 to ED), Strategic Priority Research Program of the Chinese academy of Sciences (XDA 01010202 to ED), National Natural Science Foundation of China (31201099 to SL).

Conflict of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkui Duan.

Additional information

Xiaohua Lei and Zhili Deng contribute equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(PDF 328 kb)

Figure S2

(PDF 897 kb)

Figure S3

(PDF 269 kb)

Figure S4

(PDF 346 kb)

Table S1

(PDF 22 kb)

Table S2

(PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Deng, Z., Zhang, H. et al. Rotary Suspension Culture Enhances Mesendoderm Differentiation of Embryonic Stem Cells Through Modulation of Wnt/β-catenin Pathway. Stem Cell Rev and Rep 10, 526–538 (2014). https://doi.org/10.1007/s12015-014-9511-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9511-6

Keywords

Navigation