Skip to main content

Advertisement

Log in

Gene Expression Profiles and Retinal Potential of Stem/Progenitor Cells Derived from Human Iris and Ciliary Pigment Epithelium

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The aim of our study was to isolate and characterize the properties of neurospheres and differentiated cellular progeny derived from iris and ciliary pigment epithelial (IPE and CPE) cells of human cadaveric eyes. In this study we investigated the gene expression profiles of the stem/progenitor cells and the differentiated progeny derived from IPE and CPE cells, as the changes underlying differentiation of the stem/progenitor derived from the IPE and CPE cells from human cadaveric eye are essentially unknown. The IPE and CPE cells from human cadaver eyes were cultured in the presence of mitogens to generate neurospheres (NS) and the growth characteristics were evaluated. The Neurospheres (NS) were plated under conditions inducing differentiation and their potential was analyzed by RT-PCR, immunocytochemistry, calcium imaging studies and microarray studies to measure the changes involved in the process of differentiation. The IPE and CPE cells can generate NS containing progenitor cells in the presence of mitogens and were capable of producing different retinal cell types as demonstrated by RT-PCR and immunocytochemistry. The cluster analyses of the differentially expressed genes show the dynamic changes that occur during the course of IPE and CPE neurospheres differentiating into retinal progeny. The study gives clues towards the changes that occur during differentiation from NS into retinal progeny. In the present study we have demonstrated the expansion and maintenance of SCs from IPE and CPE of cadaveric eyes. These cells maintain their self-renewal properties and the ability to differentiate along retinal cell lineages and hence could be a practical source of donor cells for ex-vivo stem cell therapy during retinal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reh, T. A., & Levine, E. M. (1998). Multipotential stem cells and progenitors in the vertebrate retina. Journal of Neurobiology, 36, 206–220.

    Article  PubMed  CAS  Google Scholar 

  2. MacLaren, R. E., Pearson, R. A., MacNeil, A., Douglas, R. H., Salt, T. E., Akimoto, M., Swaroop, A., Sowden, J. C., & Ali, R. R. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444, 203–207.

    Article  PubMed  CAS  Google Scholar 

  3. Lamba, D. A., Gust, J., & Reh, T. A. (2009). Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell, 4, 73–79.

    Article  PubMed  CAS  Google Scholar 

  4. Bartsch, U., Oriyakhel, W., Kenna, P. F., Linke, S., Richard, G., Petrowitz, B., Humphries, P., Farrar, G. J., & Ader, M. (2008). Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after sub retinal transplantation into adult mice. Experimental Eye Research, 86, 691–700.

    Article  PubMed  CAS  Google Scholar 

  5. Abdouh, M., & Bernier, G. (2006). In vivo reactivation of a quiescent cell population located in the ocular ciliary body of adult mammals. Experimental Eye Research, 83(1), 153–164.

    Article  PubMed  CAS  Google Scholar 

  6. Ikeda, H., Osakada, F., Watanabe, K., Mizuseki, K., Haraguchi, T., Miyoshi, H., Kamiya, D., Honda, Y., Sasai, N., Yoshimura, N., Takahashi, M., & Sasai, Y. (2005). Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 11331–11336.

    Article  PubMed  CAS  Google Scholar 

  7. Lamba, D. A., Karl, M. O., Ware, C. B., & Reh, T. A. (2006). Efficient generation of retinal progenitor cells from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 12769–12774.

    Article  PubMed  CAS  Google Scholar 

  8. Meyera, J. S., Shearera, R. L., Capowskia, E. E., Wrighta, L. S., Wallacea, K. A., McMillana, E. L., Zhanga, S.-C., & Gamma, D. M. (2009). Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 16698–16703.

    Article  Google Scholar 

  9. Ahmad, I., Tang, L., & Pham, H. (2000). Identification of the neural progenitors in the adult mammalian eye. Biochemical and Biophysical Research Communications, 270, 517–521.

    Article  PubMed  CAS  Google Scholar 

  10. Tropepe, V., Coles, B. L., Chiasson, B. J., Horsford, D. J., Elia, A. J., McInnes, R. R., & Vander Kooy, D. (2000). Retinal stem cells in the adult mammalian eye. Science, 287, 2032–2036.

    Article  PubMed  CAS  Google Scholar 

  11. Inoue, Y., Yanagi, Y., Tamaki, Y., Uchida, S., Kawase, Y., Araie, M., & Okochi, H. (2005). Clonogenic analysis of ciliary epithelial derived retinal progenitor cells in rabbits. Experimental Eye Research, 81, 437–445.

    Article  PubMed  CAS  Google Scholar 

  12. MacNeil, A., Pearson, R. A., MacLaren, R. E., Smith, A. J., Sowden, J. C., & Ali, R. R. (2007). Comparative analysis of progenitor cells isolated from the iris, pars plana and ciliary body of the adult porcine eye. Stem Cells, 25(10), 2430–2438.

    Article  PubMed  Google Scholar 

  13. Fischer, A. J., & Reh, T. A. (2003). Growth factors induce neurogenesis in the ciliary body. Developmental Biology, 259, 225–240.

    Article  PubMed  CAS  Google Scholar 

  14. Brenda, L. K., Coles, B. A., Inoue, T., Del Rio-Tsonis, K., Spence, J. R., McInnes, R. R., Arsenijevic, Y., & van der Kooy, D. (2004). Facile isolation and the characterization of human retinal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 15772–15777.

    Article  Google Scholar 

  15. Moe, M. C., Kolberg, R. S., Sandberg, C., Vik-Mo, E., Olstorn, H., Varghese, M., Langmoen, I. A., & Nicolaissen, B. (2009). A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain. Experimental Eye Research, 88(1), 30–38.

    Article  PubMed  CAS  Google Scholar 

  16. Asami, M., Sun, G., Yamaguchi, M., & Kosaka, M. (2007). Multipotent cells from mammalian iris pigment epithelium. Developmental Biology, 304, 433–446.

    Article  PubMed  CAS  Google Scholar 

  17. Akagi, T., Akita, J., Haruta, M., Suzuki, T., Honda, Y., Inoue, T., Yoshiura, S., Kageyama, R., Yatsu, T., Yamada, M., & Takahashi, M. (2005). Iris-derived cells from adult rodents and primates adopt photoreceptor-specific phenotypes. Investigative Ophthalmology and Visual Sciences, 46(9), 3411–3419.

    Article  Google Scholar 

  18. Haruta, M., Kosaka, M., Kanegae, Y., Saito, I., Inoue, T., Kageyama, R., Nishida, A., Honda, Y., & Takahashi, M. (2001). Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nature Neuroscience, 4, 1163–1164.

    Article  PubMed  CAS  Google Scholar 

  19. Frøen, R. C., Johnsen, E. O., Petrovski, G., Berényi, E., Facskó, A., Berta, A., Nicolaissen, B., & Moe, M. C. (2011). Pigment epithelial cells isolated from human peripheral iridectomies have limited properties of retinal stem cells. Acta Ophthalmologia, 89(8), e635–e644.

    Article  Google Scholar 

  20. Kohno, R., Ikeda, Y., Yonemitsu, Y., Hisatomi, T., Yamaguchi, M., Miyazaki, M., Takeshita, H., Ishibashi, T., & Sueishi, K. (2006). Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation. Brain Research, 1093, 54–70.

    Article  PubMed  CAS  Google Scholar 

  21. Das, A. V., James, J., Zhao, X., Rahnenfuhrer, J., & Ahmad, I. (2004). Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Developmental Biology, 273, 87–105.

    Article  PubMed  CAS  Google Scholar 

  22. Gu, P., Harwood, L. J., Zhang, X., Wylie, M., Curry, W. J., & Cogliati, T. (2007). Isolation of retinal progenitor and stem cells from the porcine eye. Molecular Vision, 13, 1045–1057.

    PubMed  CAS  Google Scholar 

  23. Bhattacharya, S., Jackson, J. D., Das, A. V., Thoreson, W. B., Kuszynski, C., James, J., Joshi, S., & Ahmad, I. (2003). Direct identification and enrichment of retinal stem cells/progenitors by Hoechst dye efflux assay. Investigative Ophthalmology & Visual Science, 44(6), 2764–2773.

    Article  Google Scholar 

  24. Mishima, M., Kaitna, S., & Glotzer, M. (2002). Central spindle assemblyand cytokinesis require a kinesin-like protein/RhoGAPcomplex with microtubule bundling activity. Developmental Cell, 2, 41–54.

    Article  PubMed  CAS  Google Scholar 

  25. Malatesta, P., Hack, M. A., Hartfuss, E., Kettenmann, H., Klinkert, W., Kirchhoff, F., & Gotz, M. (2003). Neuronal or glial progeny: regional differences in radial glia fate. Neuron, 37, 751–764.

    Article  PubMed  CAS  Google Scholar 

  26. Gurok, U., Steinhoff, C., Lipkowitz, B., Ropers, H. H., Scharff, C., & Nuber, U. A. (2004). Gene expression changes in the course of neural progenitor cell differentiation. The Journal of Neuroscience, 24(26), 5982–6002.

    Article  PubMed  CAS  Google Scholar 

  27. Schmetsdorf, S., Gartner, U., & Arendt, T. (2007). Constitutive expression of functionally active cyclin–dependent kinases and their binding partners suggests noncanonical functions of cell cycle regulators in differentiated neurons. Cerebral Cortex, 17(8), 1821–1829.

    Article  PubMed  Google Scholar 

  28. Takeuchi, T., & Ohtsuki, Y. (2001). Recent progress in T-cadherin (CDH13, H-cadherin) research. Histology and Histopathology, 16, 1287–1293.

    PubMed  CAS  Google Scholar 

  29. Takeuchi, T., Misaki, A., Liang, S. B., Tachibana, A., Hayashi, N., Sonobe, H., & Ohtsuki, Y. (2000). Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. Journal of Neurochemistry, 74, 1489–1497.

    Article  PubMed  CAS  Google Scholar 

  30. Huang, Z. Y., Wu, Y., Hedrick, N., & Gutmann, D. H. (2003). T-cadherin-mediated cell growth regulation involves G2 phase arrest and requires p21 (CIP1/WAF1) expression. Molecular and Cellular Biology, 23, 566–578.

    Article  PubMed  CAS  Google Scholar 

  31. Ivanov, D., Philippova, M., Tkachuk, V., Erne, P., & Resink, T. (2004). Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Experimental Cell Research, 293, 207–218.

    Article  PubMed  CAS  Google Scholar 

  32. Dean, C., Scholl, F. G., Choih, J., DeMaria, S., Berger, J., Isacoff, E., & Scheiffele, P. (2003). Neurexin mediates the assembly of presynaptic terminals. Nature Neuroscience, 6, 708–716.

    Article  PubMed  CAS  Google Scholar 

  33. Jones, F. S., & Jones, P. L. (2000). The Tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Developmental Dynamics, 218, 235–259.

    Article  PubMed  CAS  Google Scholar 

  34. Pevny, L., & Rao, M. S. (2003). The stem-cell menagerie. Trends in Neurosciences, 26(7), 351–359.

    Article  PubMed  CAS  Google Scholar 

  35. Singec, I., Knoth, R., Meyer, R. P., Maciaczyk, J., Volk, B., Nikkhah, G., Frotscher, M., & Snyder, E. Y. (2006). Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nature Methods, 3, 801–806.

    Article  PubMed  CAS  Google Scholar 

  36. Xu, H., Sta. Iglesia, D. D., Kielczewski, J. L., Valenta, D. F., Pease, M. E., Zack, D. J., & Quigley, H. A. (2007). Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Investigative Ophthalmology & Visual Science, 48(4), 1674–1682.

    Article  Google Scholar 

  37. Burmeister, M., Novak, J., Liang, M.-Y., Basu, S., Ploder, L., Hawes, N. L., Vidgen, D., Hoover, F., Goldman, D., Kalnins, V. I., Roderick, T. H., Taylor, B. A., Hankin, M. H., & Mclnnes, R. R. (1996). Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nature Genetics, 12, 376–384.

    Article  PubMed  CAS  Google Scholar 

  38. Warren, N., Caric, D., Pratt, T., Clausen, J. A., Asavaritikrai, P., Mason, J. O., Hill, R. E., & Price, D. J. (1999). The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cerebral Cortex, 9, 627–635.

    Article  PubMed  CAS  Google Scholar 

  39. Das, A. V., Zhao, X., James, J., Kim, M., Cowan, K. H., & Ahmad, I. (2006). Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling. Biochemical and Biophysical Research Communications, 339, 708–716.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded and supported by Department of Biotechnology Grant no.-(BT/PR7956/MED/14/1196/2006). We would like to thank Dr. Iqbal Ahmad and Dr. Ani V Das for their valuable suggestions in the culture protocols and Dr. Suganeswari .G for her help in collection of tissue samples. We would also like to thank Prof. Karl-Wilhelm Koch from Carl von Ossietzky Universität Oldenburg of for gifting the Recoverin antibody. We would also like to thank Genotypic technologies and Bionivid technologies for the statistical analysis of the Microarray data and Dr. Puspha Visvanathan of Cancer institute, Adyar, Chennai for helping in the TEM analysis.

Author Disclosure Statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnakumar Subramanian.

Additional information

Support: Grants from Department of Biotechnology (BT/PR7956/MED/14/1196/2006)

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.67 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasty, S., Srinivasan, P., Pasricha, G. et al. Gene Expression Profiles and Retinal Potential of Stem/Progenitor Cells Derived from Human Iris and Ciliary Pigment Epithelium. Stem Cell Rev and Rep 8, 1163–1177 (2012). https://doi.org/10.1007/s12015-012-9394-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9394-3

Keywords

Navigation