Skip to main content

Advertisement

Log in

Effects of Electroporation on Tamoxifen Delivery in Estrogen Receptor Positive (ER+) Human Breast Carcinoma Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Estrogen receptor positive breast cancer is the most common type of breast cancer and in most cases, hormone therapy is considered complementary to surgery. Tamoxifen is one of the most common drugs used in hormone therapy for treating estrogen receptor positive breast cancer cells. However, it has severe side-effects depending on the duration of treating breast cancer and amount of tamoxifen used. In this study, we examined the effects of electroporation on the tamoxifen uptake in estrogen receptor positive MCF–7 breast cancer cells. The survival rate of MCF–7 cells had a negative relationship with energy dissipation in cells. Similarly, the electrical charge delivered to cells during electroporation was inversely proportional to survival rate. The combined application of electroporation and tamoxifen is much more effective than the usage of tamoxifen alone in the treatment of estrogen receptor positive breast cancer. The application of electroporation increased the uptake of tamoxifen into MCF–7 cells and reduced the minimal tamoxifen dosage which, is needed for the treatment of estrogen receptor positive breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yarmush, M. L., Golberg, A., Serša, G., Kotnik, T., & Miklavčič, D. (2014). Electroporation-based technologies for medicine: Principles, applications, and challenges. Annual review of biomedical engineering, 16, 295–320.

    Article  CAS  PubMed  Google Scholar 

  2. Cemazar, M., Kotnik, T., Sersa, G., & Miklavcic, D. (2015). Electroporation for electrochemotherapy and gene therapy in book: Electromagnetic fields in biology and medicine. In M.S. Markov (Ed.) Ch. 24 (pp. 395–413). CRC Press.

  3. Sarmah, J. K., Mahanta, R., Bhattacharjee, S. K., Mahanta, R., Dey, A., Guha, P., & Biswas, A. (2012). In-vitro cytotoxicity analysis of Tamoxifen citrate loaded cross-linked guar gum nanoparticles on jurkat (human T-cell leukemia) cell line. Journal of Drug Delivery and Therapy, 2, 67–70.

    Article  CAS  Google Scholar 

  4. Jain, R. K. (1998). Delivery of molecular and cellular medicine in solid tumors. Journal of Controlled Release, 53, 49–67.

    Article  CAS  PubMed  Google Scholar 

  5. Pavlin, M., Pavselj, N., & Miklavcic, D. (2002). Dependence of induced transmembrane potentialon cell density, arrangements, and cell position inside the cell system. IEEE Transactions on Bio-Medical Engineering, 49, 605–612.

    Article  PubMed  Google Scholar 

  6. Maček-Lebar, A., & Miklavčič, D. (2001). Cell electropermeabilization to small molecules in vitro: Control by pulse parameters. Radiology and Oncology, 35, 193–202.

    Google Scholar 

  7. Teissié, J., & Rols, M. P. (1993). An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophysical Journal, 65, 409–13.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meaking, W. S., Edgerton, J., Wharton, C. W., & Meldrum, R. A. (1995). Electroporation-induced damage in mammalian cell DNA. Biochimica et biophysica acta, 1264, 357–62.

    Article  PubMed  Google Scholar 

  9. Gehl, J. (2003). Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica, 177, 437–47.

    Article  CAS  PubMed  Google Scholar 

  10. Dev, S. B. (1994). Killing cancer cells with a combination of pulsed electric fields and chemotherapeutic agents. Cancer Watch, 3, 12–14.

    Google Scholar 

  11. Dev, S. B., & Hofmann, G. A. (1994). Electrochemotherapy-A novel method of cancer treatment. Cancer Treatment Reviews, 20, 105–115.

    Article  CAS  PubMed  Google Scholar 

  12. Lumachi, F., Brunello, A., Maruzzo, M., Basso, U., & Basso, S. M. (2013). Treatment of estrogen receptor-positive breast cancer. Current Medicinal Chemistry, 20, 596–604.

    Article  CAS  PubMed  Google Scholar 

  13. Seeger, H., Huober, J., Wallwiener, D., & Mueck, A. O. (2004). Inhibition of human breast cancer cell proliferation with estradiol metabolites is as effective as with tamoxifen. Hormone and Metabolic Research, 36, 277–280.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher, B., Costantino, J. P., Wickerham, D. L., Redmond, C. K., & Kavanah, M., et al. (1998). Tamoxifen for prevention of breast cancer: Report of the national surgical adjuvant breast and bowel project P–1 study. Journal of the National Cancer Institute, 90, 1371–1388.

    Article  CAS  PubMed  Google Scholar 

  15. Nayfield, S. G., Karp, J. E., Ford, L. G., Dorr, F. A., & Kramer, B. S. (1991). Potential role of tamoxifen in prevention of breast cancer. Journal of the National Cancer Institute, 83, 1450–1459.

    Article  CAS  PubMed  Google Scholar 

  16. Bush, T. L., & Helzlsouer, K. J. (1993). Tamoxifen for the primary prevention of breast cancer: A review and critique of the concept and trial. Epidemiologic Reviews, 1, 233–43.

    Article  Google Scholar 

  17. Brauch, H., & Jordan, V. C. (2009). Targeting of tamoxifen to enhance antitumour action for the treatment and prevention of breast cancer: The ‘personalised’ approach?”. European Journal of Cancer, 45, 2274–2283.

    Article  CAS  PubMed  Google Scholar 

  18. Davies, C., Godwin, J., & Gray, R., et al. (2011). Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. The Lancet, 378, 771–784.

    Article  CAS  Google Scholar 

  19. Fisher, B., Costantino, J. P., Wickerham, D. L., Cecchini, R. S., Cronin, W. M., Robidoux, A., Bevers, T. B., Kavanah, M. T., Atkins, J. N., Margolese, R. G., Runowicz, C. D., James, J. M., Ford, L. G., & Wolmark, N. (2005). Tamoxifen for the prevention of breast cancer: Current status of the national surgical adjuvant breast and bowel project P–1 study. Journal of the National Cancer Institute, 97, 1652–1662.

    Article  CAS  PubMed  Google Scholar 

  20. Davies, C., Pan, H., & Godwin, J., et al. (2013). The adjuvant tamoxifen: Longer against shorter (ATLAS) collaborative group Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet, 381, 805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leeuwen, F. E., Benraadt, J., Coebergh, J. W. W., Kiemeney, L. A. L. M., Gimbrère, C. H. F., & Otter, R., et al. (1994). Risk of endometrial cancer after tamoxifen treatment of breast cancer. Lancet, 343, 448–52.

    Article  PubMed  Google Scholar 

  22. Bergman, L., Beellen, M. L., Gallee, M. P. W., Hollema, H., Benraadt, J., & van Leeuwen, F. E., et al. (2000). Risk and prognosis of endometrial cancer after tamoxifen for breast cancer. Lancet, 356, 881–7.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, G. Y., Conner, A. J., Wang, J., Fautrier, A. G., & Field, R. J. (1998). Energy dissipation as a key factor for electroporation of protoplasts. Molecular Biotechnology, 10, 209–16.

    Article  CAS  PubMed  Google Scholar 

  24. Kavitha, S., Raja Ramachandran, P., Kumar, M.S., Kumar, V.M., Vignesh, S., Malini, V., Renny, C.M., Guhathakurta, S., Cherian, K.M., Natarajan, A., Sundararajan, R. (2010) Electro-molecular therapy using adult mesenchmal stem cells. In Proceedings of the ESA annual meeting on electrostatics (p. I3). University of North Carolina, Charlotte, USA.

  25. Canatella, P. J., Karr, J. F., Petros, J. A., & Prausnitz, M. R. (2001). Quantitative study of electroporationmediated molecular uptake and cell viability. Biophysical Journal, 80, 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hui, S.W. & Li, L.H. (2000) In vitro and ex vivo gene delivery to cells by electroporation, In M.J. Jaroszeski, R. Heller, & R. Gilbert (Eds.), Electrochemotherapy, electrogenetherapy, and transdermal drug delivery. Humana Press. New York City, USA.

  27. Lurquin, P. F. (2013). The rate of electrical energy dissipation (power) and the RC constant unify all electroporation parameters. Biotechnology, 3, 331–333.

    Google Scholar 

  28. Lurquin, P. F. (1997). Gene transfer by electroporation. Molecular Biotechnology, 7, 5–35.

    Article  CAS  PubMed  Google Scholar 

  29. Jordan, E. T., Collins, M., Terefe, J., Ugozzoli, L., & Rubio, T. (2008). Optimizing electroporation conditions in primary and other difficult-to-transfect cells. Journal of Biomolecular Techniques, 19, 328–334.

    PubMed  PubMed Central  Google Scholar 

  30. Liang, H., Purucker, W. J., Stenger, D. A., Kubiniec, R. T., & Hui, S. W. (1988). Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential-decay electric field pulses. BioTechniques, 6, 550 –558.

    CAS  PubMed  Google Scholar 

  31. Prausnitz, M. R., Milano, C. D., Gimm, J. A., Langer, R., & Weaver, J. C. (1994). Quantitative study of molecular transport due to electroporation: Uptake of bovine serum albumin by erythrocyte ghosts. Biophysical Journal, 66, 1522–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cemazar, M., Jarm, T., Miklavcic, D., Macek-Lebar, A., Ihan, A., Kopitar, N. A., & Sersa, G. (1998). Effect of Electric-Field Intensity on electropermeabilization and electrosensitmty of various tumor-cell lines in vitro. Electromagnetic Biology and Medicine, 17, 263–272.

    Google Scholar 

  33. Pehlivanova, V. N., Tsoneva, I. H., & Tzoneva, R. D. (2012). Multiple effects of electroporation on the adhesive behaviour of breast cancer cells and fibroblasts. Cancer Cell International, 12, 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neal, R. E., Singh, R., Hatcher, H. C., Kock, N. D., Torti, S. V., & Davalos, R. V. (2010). Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Research and Treatment, 123, 295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kulbacka, J., Kotulska, M., Rembiałkowska, N., Choromańska, A., Kamińska, I., Garbiec, A., Rossowska, J., Daczewska, M., Jachimska, B., & Saczko, J. (2013). Cellular stress induced by photodynamic reaction with CoTPPS and MnTMPyPCl5 in combination with electroporation in human colon adenocarcinoma cell lines (LoVo and LoVoDX). Cell Stress & Chaperones, 18, 719–31.

    Article  CAS  Google Scholar 

  36. Schmidt, G., Juhasz-Böss, I., Solomayer, E. F., & Herr, D. (2014). Electrochemotherapy in breast cancer: A review of references. Geburtshilfe und Frauenheilkunde, 74, 557–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jarm, T., Cemazar, M., Miklavcic, D., & Sersa, G. (2010). Antivascular effects of electrochemotherapy: Implications in treatment bleeding metastases. Expert Review of Anticancer Therapy, 10, 729–746.

    Article  PubMed  Google Scholar 

  38. Kotnik, T., Pucihar, G., Rebersˇek, M., Miklavcˇic, D., & Mir, M. L. (2003). Role of pulse shape in cell membrane electropermeabilization. Biochimica et Biophysica Acta, 1614, 193–200.

    Article  CAS  PubMed  Google Scholar 

  39. Matthiessen, L. W., Johannesen, H. H., Hendel, H. W., Moss, T., Kamby, C., & Gehl, J. (2012). Electrochemotherapy for large cutaneous recurrence of breast cancer: A phase II clinical trial. Acta Oncologica (Stockholm, Sweden), 51, 713–21.

    Article  Google Scholar 

  40. Mali, B., Jarm, T., & Snoj, M., et al. (2013). Antitumor effectiveness of electrochemotherapy: A systematic review and meta-analysis. European Journal of Surgical Oncology : The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 39, 4–16.

    Article  CAS  Google Scholar 

  41. Sersa, G., Cufer, T., Paulin, S. M., Cemazar, M., & Snoj, M. (2012). Electrochemotherapy of chest wall breast cancer recurrence. Cancer Treatment Reviews, 38, 379–86.

    Article  PubMed  Google Scholar 

  42. Benevento, R., Santoriello, A., Perna, G., & Canonico, S. (2012). Electrochemotherapy of cutaneous metastastes from breast cancer in elderly patients: A preliminary report. BMC Surgery, 12, 1–6.

    Article  Google Scholar 

  43. Rebersek, M., Cufer, T., Cemazar, M., Kranjc, S., & Sersa, G. (2004). Electrochemotherapy with cisplatin of cutaneous tumor lesions in breast cancer. Anti-Cancer Drugs, 15, 593–597.

    Article  CAS  PubMed  Google Scholar 

  44. Raeisi, E., Aghamiri, S. M., Bandi, A., Rahmatpour, N., Firoozabadi, S. M., Kâfi-Abad, S. A., & Mir, L. M. (2012). The antitumor efficiency of combined electrochemotherapy and single dose irradiation on a breast cancer tumor model. Radiology and Oncology, 46, 226–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miklavcic, D., Mali, B., Kos, B., Heller, R., & Sersa, G. (2014). Electrochemotherapy: From the drawing board into medical practice. Biomedical Engineering Online, 13, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Matthiessen, L. W., Johannesen, H. H., & Hendel, H. W., et al. (2012). Electrochemotherapy for large cutaneous recurrence of breast cancer: A phase II clinical trial. Acta Oncologica, 51, 713–721.

    Article  PubMed  Google Scholar 

  47. Gilbert, R. A., Jaroszeski, M. J., & Heller, R. (1997). Novel electrode designs for electrochemotherapy. Biochimica et Biophysica Acta, 1334, 9–14.

    Article  CAS  PubMed  Google Scholar 

  48. Sersa, G., Cemazar, M., & Rudolf, Z. (2003). Electrochemotherapy: Advantages and drawbacks in treatment of cancer patients. Cancer Therapy, 1, 133–142.

    Google Scholar 

  49. Marty, M., Sersa, G., Garbay, J. R., Gehl, J., Collins, C. G., & Snoj, M., et al. (2006). Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European standard operating procedures of electrochemotherapy) study. European Journal of Cancer (Oxford, England : 1990), 4, 3–13.

    Article  CAS  Google Scholar 

  50. Mir, L. M., Glass, L. F., & Serša, G., et al. (1998). Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. British Journal of Cancer, 77, 2336–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sersa, G. (2006). The state-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses. European Journal of Cancer, 245, 469–479.

    Google Scholar 

  52. Benevento, R., Santoriello, A., Perna, G., & Canonico, S. (2012). Electrochemotherapy of cutaneous metastastes from breast cancer in elderly patients: A preliminary report. BMC Surgery, 12 Suppl 1, S6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meric Arda Esmekaya.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmekaya, M.A., Kayhan, H., Yagci, M. et al. Effects of Electroporation on Tamoxifen Delivery in Estrogen Receptor Positive (ER+) Human Breast Carcinoma Cells. Cell Biochem Biophys 75, 103–109 (2017). https://doi.org/10.1007/s12013-016-0776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0776-z

Keywords

Navigation