Skip to main content

Advertisement

Log in

Effect of Porphyrin Sensitizer MgTPPS4 on Cytoskeletal System of HeLa Cell Line—Microscopic Study

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Metalloporphyrins are an important group of sensitizers with a porphyrin skeleton. Their photophysical properties are significantly affected by the nature of the central ion. In this work, we focus on the mechanical properties of a cervix carcinoma cell line which underwent photodynamic treatment (PDT) with MgTPPS4 photosensitzer. Atomic force microscopy alongside confocal microscopy was used to quantify and qualify the structural characteristics before and after PDT. Cells before PDT showed a fine actin network and higher elasticity with the median of Young modulus 12.2 kPa. After PDT, the median of Young modulus was 13.4 kPa and a large redistribution in the actin network was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AF:

Actin filament

AFM:

Atomic Force Microscopy

PDT:

Photodynamic Treatment

F-d curve:

Force—distance curve

References

  1. Agostinis, P., Berg, K., Cengel, K. A., et al. (2011). Photodynamic therapy of cancer: an update. CA: a Cancer Journal for Clinicians, 61, 250–281.

    Google Scholar 

  2. Kudinova, N. V., & Berezov, T. T. (2010). Photodynamic therapy of cancer: Search for ideal photosensitizer. Biochemistry (Moscow) Supplement Series B, 4, 95–103.

    Article  Google Scholar 

  3. Kolarova, H., Nevrelova, P., Tomankova, K., et al. (2008). Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers. General Physiology and Biophysics, 27, 101–105.

    CAS  PubMed  Google Scholar 

  4. Lapes, M., & Petera, J. (1996). Jirsa M (1996) Photodynaic therapy of cutaneous metastases of breast cancer after local application of meso-tetra-(para-sulphophenyl)-porphin (TPPS4). Journal of Photochemistry and Photobiology B, 36, 205–207.

    Article  CAS  Google Scholar 

  5. Kubat, P., & Mosinger, J. (1996). Photophysical properties of metal complexes of meso-tetrakis(4-sulphonatophenyl) porphyrin. Journal of Photochemistry and Photobiology A, 96, 93–97.

    Article  CAS  Google Scholar 

  6. Sanabria, L. M., Rodriguez, M. E., Cogno, I. S., et al. (2013). Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. BBA Reviews on Cancer, 1835, 36–45.

    Google Scholar 

  7. Liu, T., Wu, L. Y., & Berkman, C. E. (2010). Prostate-specific membrane antigen-targeted photodynamic therapy induces rapid cytoskeletal disruption. Cancer Letters, 296, 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Starodubtseva, M. N. (2011). Mechanical properties of cells and ageing. Ageing Research Reviews, 10, 16–25.

    Article  PubMed  Google Scholar 

  9. Casas, A., Sanz-Rodriguez, F., Di Venosa, G., et al. (2008). Disorganisation of cytoskeleton in cells resistant to photodynamic treatment with decreased metastatic phenotype. Cancer Letters, 270, 56–65.

    Article  CAS  PubMed  Google Scholar 

  10. Papakonstanti, E. A., & Stournaras, C. (2008). Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Letters, 582, 2120–2127.

    Article  CAS  PubMed  Google Scholar 

  11. Maftoum-Costa, M., Naves, K. T., Oliveira, A. L., et al. (2008). Mitochondria, endoplasmic reticulum and actin filament behaviour after PDT with chloroaluminum phthalocyanine liposomal in HeLa cells. Cell Biology International, 32, 1024–1028.

    Article  CAS  PubMed  Google Scholar 

  12. Berquand, A., Holloschi, A., Trendelenburg, M., et al. (2010). Analysis of cytoskeleton-destabilizing agents by optimized optical navigation and AFM force measurements. Microscopy Today, 18, 34–37.

    Article  CAS  Google Scholar 

  13. Rebelo, L. M., de Sousa, J. S., Mendes Filho, J., et al. (2013). Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. Nanotechnology, 24, 55102–55113.

    Article  CAS  Google Scholar 

  14. Zhou, E. H., Quek, S. T., & Lim, C. T. (2010). Power-law rheology analysis of cells undergoing micropipette aspiration. Biomechanics and Modeling in Mechanobiology, 9, 563–572.

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y., Wen, C., Xie, H., et al. (2009). Mechanical property analysis of stored red blood cell using optical tweezers. Colloid Surface B, 70, 169–173.

    Article  CAS  Google Scholar 

  16. Fodil, R., Laurent, V., Planus, E., et al. (2003). Characterization of cytoskeleton mechanical properties and 3D-actin structure in twisted adherent epithelial cells. Biorheology, 40, 241–245.

    PubMed  Google Scholar 

  17. Binnig, G., & Quate, C. F. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933.

    Article  PubMed  Google Scholar 

  18. Lekka, M., Pogoda, K., Gostek, J., et al. (2012). Cancer cell recognition—mechanical phenotype. Micron, 43, 1259–1266.

    Article  PubMed  Google Scholar 

  19. Guo, Q., Xia, Y., Sandig, M., et al. (2012). Characterization of cell elasticity correlated with cell morphology by atomic force microscope. Journal of Biomechanics, 45, 304–309.

    Article  PubMed  Google Scholar 

  20. Bushell, G. R., Cahill, C., Clarke, F. M., et al. (1999). Imaging and force-distance analysis of human fibroblasts in vitro by atomic force microscopy. Cytometry, 36, 254–264.

    Article  CAS  PubMed  Google Scholar 

  21. Pogoda, K., Jaczewska, J., Wiltowksa-Zuber, J., et al. (2012). Depth-sensing analysis of cytoskeleton organization based on AFM data. European Biophysics Journal, 41, 79–87.

    Article  CAS  PubMed  Google Scholar 

  22. Tsai, J. C., Wu, C. L., Chien, H. F., et al. (2005). Reorganization of cytoskeleton induced by 5-aminolevulinic acid—mediated photodynamic therapy and its correlation with mitochondrial dysfunction. Laser in Surgery and Medicine, 36, 398–408.

    Article  Google Scholar 

  23. Plaetzer, K., Kiesslich, T., Verwanger, T., et al. (2003). The modes of cell death induced by PDT: an overview. Medical Laser Application, 18, 7–9.

    Article  Google Scholar 

  24. Berlanda, J., Kiesslich, T., Engelhardt, V., et al. (2010). Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. Journal of Photochemistry Photobiology B, 100, 173–180.

    Article  CAS  Google Scholar 

  25. Jung, S. H., Park, J. Y., Yoo, J. O., et al. (2009). Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy. Ultramicroscopy, 109, 1428–1434.

    Article  CAS  PubMed  Google Scholar 

  26. Uzdensky, A., Kolpakova, E., Juzeniene, A., et al. (2005). The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells. BBA General Subjects, 1722, 43–50.

    Article  CAS  PubMed  Google Scholar 

  27. Juarranz, A., Espada, J., Stockert, J. C., et al. (2001). Photodamege unduced by zinc(II)-phthalocyanine to microtubules, actin, α-actinin and keratin of HeLa cells. Photochemistry and Photobiology, 73, 283–289.

    Article  CAS  PubMed  Google Scholar 

  28. Li, Q. S., Lee, G. Y. H., Ong, C. N., et al. (2008). AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications, 374, 609–613.

    Article  CAS  PubMed  Google Scholar 

  29. Lekka, M., Laidler, P., Gil, D., et al. (1999). Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal, 28, 312–316.

    Article  CAS  PubMed  Google Scholar 

  30. Prabhune, M., Belge, G., Dotzauer, A., et al. (2012). Comparison of mechanical properties of normal and malignant thyroid cells. Micron, 43, 1267–1272.

    Article  PubMed  Google Scholar 

  31. Wakatsuki, T., Schwab, B., Thompson, N. C., et al. (2000). Effects of cytochalasin D and lantrunculin B on mechanical properties of cells. Journal of Cell Science, 114, 1025–1036.

    Google Scholar 

  32. Rotsch, C., & Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal, 78, 520–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kasas, S., Wang, X., Hirling, H., et al. (2005). Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motility and the Cytoskeleton, 62, 124–132.

    Article  CAS  PubMed  Google Scholar 

  34. Kolar, P., Tomankova, K., Malohlava, J., et al. (2013). The effect of photodynamic treatment on morphological and mechanical properties of the HeLa cell line. General Physiology and Biophysics, 32, 337–346.

    Article  CAS  PubMed  Google Scholar 

  35. Jin, H., Xing, X., Zhao, H., et al. (2010). Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope. Biochemical and Biophysical Reseasrch Communications, 391, 1698–1702.

    Article  CAS  Google Scholar 

  36. Sugitate, T., Kihara, T., Liu, X. Y., et al. (2009). Mechanical role of the nucleus in a cell in terms of elastic modulus. Current Applied Physics, 9, e291–e293.

    Article  Google Scholar 

  37. Cross, S. E., Jin, Y. S., Rao, J., et al. (2007). Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2, 780–783.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jiri Mosinger from the Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic, for MgTPPS4 sensitizer preparation. This study was supported by LF_2015_008, IGA MZCR NT 14060-3/2013 and NPU I LO1304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Malohlava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malohlava, J., Tomankova, K., Malina, L. et al. Effect of Porphyrin Sensitizer MgTPPS4 on Cytoskeletal System of HeLa Cell Line—Microscopic Study. Cell Biochem Biophys 74, 419–425 (2016). https://doi.org/10.1007/s12013-016-0746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0746-5

Keywords

Navigation