Skip to main content

Advertisement

Log in

The Effects of Phrenic Nerve Degeneration by Axotomy and Crush on the Electrical Activities of Diaphragm Muscles of Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of axotomy and crush-related degeneration on the electrical activities of diaphragm muscle strips of experimental rats. In the present study, twenty-one male Wistar-albino rats were used and divided into three groups. The animals in the first group were not crushed or axotomized and served as controls. Phrenic nerves of the rats in the second and third groups were crushed or axotomized in the diaphragm muscle. Resting membrane potential (RMP) was decreased significantly in both crush and axotomy of diaphragm muscle strips of experimental rats (p < 0.05). Depolarization time (T DEP) and half-repolarization (1/2 RT) time were significantly prolonged in crush and axotomy rats (p < 0.05). Crushing or axotomizing the phrenic nerves may produce electrical activities in the diaphragm muscle of the rat by depolarization time and half-repolarization time prolonged in crush and axotomy rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kobayashi, J., Mackinnon, S. E., Watanabe, O., Ball, D. J., Gu, X. M., Hunter, D. A., & Kuzon, W. M, Jr. (1997). The effect of duration of muscle denervation on functional recovery in the rat model. Muscle and Nerve, 20(7), 858–866.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, M., Doolabh, V. B., Mackinnon, S. E., & Jost, S. (2000). FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle and Nerve, 23(4), 633–640.

    Article  CAS  PubMed  Google Scholar 

  3. Rotshenker, S. (2011). Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation, 8, 109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, S. C., Rau, C. S., Lu, T. H., Wu, C. J., Wu, Y. C., Tzeng, S. L., et al. (2013). Knockout of TLR4 and TLR2 impair the nerve regeneration by delayed demyelination but not remyelination. Journal of Biomedical Science, 20, 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mueller, M., Leonhard, C., Wacker, K., Ringelstein, E. B., Okabe, M., Hickey, W. F., & Kiefer, R. (2003). Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Laboratory Investigation, 83, 175–185.

    Article  PubMed  Google Scholar 

  6. Lee, H., Choi, S. Y., Seog Bae, O. H., Park, L., Kim, S. J., & Lee, S. J. (2006). Damaged neuronal cells induce inflammatory gene expression in schwann cells: implication in the Wallerian degeneration international. Journal of Oral Biology, 31(3), 87–92.

    Google Scholar 

  7. Lane, M. A., Fuller, D. D., White, T. E., & Reier, P. J. (2008). Respiratory neuroplasticity and cervical spinal cord injury: translational perspectives. Trends in Neurosciences, 31(2008), 538–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shanmuganathan, K., Gullapalli, R. P., Zhuo, J., & Mirvis, S. E. (2008). Diffusion tensor MR imaging in cervical spine trauma. American Journal of Neuroradiology, 29, 655–659.

    Article  CAS  PubMed  Google Scholar 

  9. Nicaise, T. J., Hala, D. M., Frank, J. L., Parker, M. A., Leroy, K., Jean-Pierre, B., et al. (2012). Lepore Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury. Experimental Neurology, 235(2), 539–552.

    Article  PubMed  Google Scholar 

  10. Burns, J., & Dunning, J. (2010). Is the preservation of the phrenic nerve important after pneumonectomy? Interactive CardioVascular and Thoracic Surgery, 38(6), 798–800.

    Google Scholar 

  11. Watanabe, T., Trusler, G. A., Williams, W. G., Edmonds, J. F., Coles, J. G., & Hosokawa, Y. (1987). Phrenic nerve paralysis after paediatric cardiac surgery. Retrospective study of 125 cases. Journal of Thoracic and Cardiovascular Surgery, 94, 383–388.

    CAS  PubMed  Google Scholar 

  12. Diehl, J. L., Lofaso, F., Deleuze, P., Similowski, T., Lemaire, F., & Brochard, L. (1994). Clinically relevant diaphragmatic dysfunction after cardiac operations. Journal of Thoracic and Cardiovascular Surgery, 107, 487–497.

    CAS  PubMed  Google Scholar 

  13. Curtis, J. J., Nawarawong, W., & Walls, J. T. (1989). Elevated hemidiaphragm after cardiac operations: Incidence, prognosis, and relationship to the use of topical ice slush. Annals of Thoracic Surgery, 48, 764–768.

    Article  CAS  PubMed  Google Scholar 

  14. Aşkar, Z., Yurday, Ç.H. (1994). Heart and Vascular Surgery, İstanbul.

  15. Yemişc, O.Ü. (2005). After cardiac surgery in infants and young children, show the frequency of transient phrenic nerve palsy and temporal course with electrodiagnostic methods. Master thesis, Institute of Health Sciences, Baskent University, Ankara.

  16. Sayir, F., Kavak, S., Meral, I., Demir, H., Cengiz, N., & Çobanoğlu, U. (2012). Effect of crush and axotomy of phrenıc nerves on oxıdatıve stress ın dıaphragm muscle of rats. Muscle and Nerve, 45(3), 412–415.

    Article  CAS  PubMed  Google Scholar 

  17. Shındoh, C., Hıda, W., Kurosawa, H., Ebıhara, S., Kıkuchı, Y., & Takıshımaa, T. (1994). Effects of unilateral phrenic nerve denervation on diaphragm contractility in rat. Tohoku Journal of Experimental Medicine, 173, 291–302.

    Article  PubMed  Google Scholar 

  18. Nikolsky, E. E., Oranska, T. I., & Vyskocil, F. (1996). Non-quantal acetylcholine release in the mouse diaphragm after phrenic nerve crush and during recovery. Experimental Physiology, 81, 341–348.

    Article  CAS  PubMed  Google Scholar 

  19. Gıllıatt, R. W., & Hjorth, R. J. (1972). Nerve conduction during Wallerian degeneration in the baboon. Journal of Neurology, Neurosurgery and Psychiatry, 35, 335–341.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martin-Caraballo, M., & Greer, J. J. (1999). Electrophysiological properties of rat phrenic motoneurons during perinatal development. Journal of Neurophysiology, 81(3), 1365–1378.

    CAS  PubMed  Google Scholar 

  21. Sejersted, O. M., & Sjogaard, G. (2000). Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiological Reviews, 80, 1411–1481.

    CAS  PubMed  Google Scholar 

  22. Meyer, F. J., Zugck, C., Haass, M., Otterspoor, L., Strasser, R. H., & Kubler, W. (2000). Inefficient ventilation and reduced respiratory muscle capacity in congestive heart failure. Basic Research in Cardiology, 95, 333–342.

    Article  CAS  PubMed  Google Scholar 

  23. Greer, J. J., Allan, D. W., Martin-Caraballo, M., & Lemke, R. P. (1999). An overview of phrenic nerve and diaphragm muscle development in perinatal rat. Journal of Applied Physiology, 86(3), 779–860.

    CAS  PubMed  Google Scholar 

  24. Guyton, A. C. (2005). Resting membrane potential. In J. E. Hall (Ed.), Textbook of medical physiology (11th ed.). Missouri: Saunders.

    Google Scholar 

  25. Akaike, N. (1981). Sodium pump in skeletal muscle: Central nervous system-induced suppression by a-adrenoreceptors. Science, 213, 1252–1254.

    Article  CAS  PubMed  Google Scholar 

  26. Davis-Lopez de Carrizosa, M. A., Morado-Diaz, C. J., Tena, J. J., Benitez- Temino, B., Pecero, M. L., Morcuende, S. R., et al. (2009). Complementary actions of BDNF and neurotrophin-3 on the firing patterns and synaptic composition of motoneurons. Journal of Neuroscience, 29, 575–587.

    Article  CAS  PubMed  Google Scholar 

  27. Rasmussen, H. (1986). The calcium messenger system. New England Journal of Medicine, 314(17), 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  28. Ogura, H., Tachibana, T., Yamanaka, H., Kobayashi, K., Obata, K., Dai, Y., et al. (2007). Axotomy increases plasma membrane Ca2+ pump isoform 4 in primary afferent neurons. NeuroReport, 18, 17–22.

    Article  CAS  PubMed  Google Scholar 

  29. Lunteren, E., & Moyer, M. (2003). Streptozotocin-diabetes alters action potentials in rat diaphragm. Respiratory Physiology & Neurobiology, 135, 9–16.

    Article  Google Scholar 

  30. Kallen, R. G., Sheng, Z. H., Yang, J., Chen, L., Rogart, R. B., & Barchi, R. L. (1990). Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron, 4, 233–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Yüzüncü Yıl University Research Projects Department. We thank Dr. Nurettin Cengiz and Hava Bektaş.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Eşref Alkiş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkiş, M.E., Kavak, S., Sayır, F. et al. The Effects of Phrenic Nerve Degeneration by Axotomy and Crush on the Electrical Activities of Diaphragm Muscles of Rats. Cell Biochem Biophys 74, 29–34 (2016). https://doi.org/10.1007/s12013-015-0708-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0708-3

Keywords

Navigation