Skip to main content
Log in

Modification of Antitumor Immunity and Tumor Microenvironment by Resveratrol in Mouse Renal Tumor Model

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) microenvironment plays critical roles in antitumor immune response. Resveratrol exhibits a direct antitumor effect in various tumor models. However, the immunomodulatory effect of resveratrol on RCC microenvironment is unknown. In this study, we found that administration of low dose of resveratrol inhibits Renca tumor growth and its inhibition effect depends on CD8+ T cells. Moreover, the proportion of regulatory T cells is decreased, while the proportion of myeloid-derived suppressor cells does not alter after resveratrol treatment. More importantly, massive amount of activated CD8+ T cells accumulates in tumor microenvironment in the resveratrol-treated group and shows increased cytotoxicity, as indicated by a higher expression of Fas ligand. We also found that resveratrol switches the expression of T-helper (Th) 2 cytokines such as interleukin (IL)-6 and IL-10 to Th 1 cytokines with dominance of interferon (IFN)-γ, which increases the expression of Fas in Renca cells. Furthermore, we found resveratrol down-regulates angiogenesis along with decreased level of vascular endothelial growth factor in tumor microenvironment. Our results strongly suggest that resveratrol might be used for RCC immunotherapy through modulating tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RCC:

Renal cell carcinoma

Tregs:

Regulatory T cells

MDSCs:

Myeloid-derived suppressor cells

NK:

Natural killer

Th:

T-helper

IL-2:

Interleukin-2

IL-6:

Interleukin-6

IL-10:

Interleukin-10

IFN-γ:

Interferon-γ

FasL:

Fas ligand

VEGF:

Vascular endothelial growth factor

References

  1. Gupta, K., Miller, J. D., Li, J. Z., Russell, M. W., & Charbonneau, C. (2008). Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): A literature review. Cancer Treatment Reviews, 34, 193–205.

    Article  PubMed  Google Scholar 

  2. Rosenberg, S. A., Lotze, M. T., Muul, L. M., et al. (1987). A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. The New England Journal of Medicine, 316, 889–897.

    Article  CAS  PubMed  Google Scholar 

  3. Hutson, T. E. (2011). Targeted therapies for the treatment of metastatic renal cell carcinoma: Clinical evidence. The Oncologist, 16(Suppl 2), 14–22.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Escudier, B. (2012). Emerging immunotherapies for renal cell carcinoma. Annals of oncology, 23(Suppl 8), viii35–viii40.

    Article  PubMed  Google Scholar 

  5. Kopecky, O., Lukesova, S., Vroblova, V., et al. (2007). Phenotype analysis of tumour-infiltrating lymphocytes and lymphocytes in peripheral blood in patients with renal carcinoma. Acta Medica, 50, 207–212.

    PubMed  Google Scholar 

  6. Finke, J. H., Rayman, P. A., Ko, J. S., Bradley, J. M., Gendler, S. J., & Cohen, P. A. (2013). Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer Journal, 19, 353–364.

    Article  CAS  Google Scholar 

  7. Seruga, B., Zhang, H., Bernstein, L. J., & Tannock, I. F. (2008). Cytokines and their relationship to the symptoms and outcome of cancer. Nature Reviews Cancer, 8, 887–899.

    Article  CAS  PubMed  Google Scholar 

  8. Dunn, G. P., Koebel, C. M., & Schreiber, R. D. (2006). Interferons, immunity and cancer immunoediting. Nature Reviews Immunology, 6, 836–848.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, J. K., Sayers, T. J., Brooks, A. D., et al. (2000). IFN-gamma-dependent delay of in vivo tumor progression by Fas overexpression on murine renal cancer cells. Journal of Immunology, 164, 231–239.

    Article  CAS  Google Scholar 

  10. Gupta, S. C., Kannappan, R., Reuter, S., Kim, J. H., & Aggarwal, B. B. (2011). Chemosensitization of tumors by resveratrol. Annals of the New York Academy of Sciences, 1215, 150–160.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Shukla, Y., & Singh, R. (2011). Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences, 1215, 1–8.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Y., Paik, J. H., Cho, D., Cho, J. A., & Kim, C. W. (2008). Resveratrol induces the suppression of tumor-derived CD4 + CD25 + regulatory T cells. International Immunopharmacology, 8, 542–547.

    Article  CAS  PubMed  Google Scholar 

  13. Feng, Y. H., Zhou, W. L., Wu, Q. L., Li, X. Y., Zhao, W. M., & Zou, J. P. (2002). Low dose of resveratrol enhanced immune response of mice. Acta Pharmacologica Sinica, 23, 893–897.

    CAS  PubMed  Google Scholar 

  14. Soto, B. L., Hank, J. A., Darjatmoko, S. R., et al. (2011). Anti-tumor and immunomodulatory activity of resveratrol in vitro and its potential for combining with cancer immunotherapy. International Immunopharmacology, 11, 1877–1886.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gajewski, T. F., Schreiber, H., & Fu, Y. X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 14, 1014–1022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Russell, J. H., & Ley, T. J. (2002). Lymphocyte-mediated cytotoxicity. Annual Review of Immunology, 20, 323–370.

    Article  CAS  PubMed  Google Scholar 

  17. Nagata, S. (1997). Apoptosis by death factor. Cell, 88, 355–365.

    Article  CAS  PubMed  Google Scholar 

  18. Motz, G. T., & Coukos, G. (2011). The parallel lives of angiogenesis and immunosuppression: Cancer and other tales. Nature Reviews Immunology, 11, 702–711.

    Article  CAS  PubMed  Google Scholar 

  19. Schraml, P., Struckmann, K., Hatz, F., et al. (2002). VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. The Journal of Pathology, 196, 186–193.

    Article  CAS  PubMed  Google Scholar 

  20. Lee-Chang, C., Bodogai, M., Martin-Montalvo, A., et al. (2013). Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. Journal of Immunology, 191, 4141–4151.

    Article  CAS  Google Scholar 

  21. Fridman, W. H., Pages, F., Sautes-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: Impact on clinical outcome. Nature Reviews Cancer, 12, 298–306.

    Article  CAS  PubMed  Google Scholar 

  22. Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Reviews Cancer, 5, 263–274.

    Article  CAS  PubMed  Google Scholar 

  23. Rieder, S. A., Nagarkatti, P., & Nagarkatti, M. (2012). Multiple anti-inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury. British Journal of Pharmacology, 167, 1244–1258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Guan, H., Singh, N. P., Singh, U. P., Nagarkatti, P. S., & Nagarkatti, M. (2012). Resveratrol prevents endothelial cells injury in high-dose interleukin-2 therapy against melanoma. PLoS ONE, 7, e35650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Maher, J., & Davies, E. T. (2004). Targeting cytotoxic T lymphocytes for cancer immunotherapy. British Journal of Cancer, 91, 817–821.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Shanker, A., Brooks, A. D., Jacobsen, K. M., et al. (2009). Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity. Cancer Research, 69, 6615–6623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sayers, T. J., Brooks, A. D., Lee, J. K., et al. (1998). Molecular mechanisms of immune-mediated lysis of murine renal cancer: Differential contributions of perforin-dependent versus Fas-mediated pathways in lysis by NK and T cells. Journal of Immunology, 161, 3957–3965.

    CAS  Google Scholar 

  28. Jeong, S. K., Yang, K., Park, Y. S., et al. (2014). Interferon gamma induced by resveratrol analog, HS-1793, reverses the properties of tumor associated macrophages. International Immunopharmacology, 22, 303–310.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Nature Science Foundation of Hubei Province of China 302132458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, S., Liao, W. et al. Modification of Antitumor Immunity and Tumor Microenvironment by Resveratrol in Mouse Renal Tumor Model. Cell Biochem Biophys 72, 617–625 (2015). https://doi.org/10.1007/s12013-015-0513-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0513-z

Keywords

Navigation